• Title/Summary/Keyword: 회귀의사결정나무

Search Result 141, Processing Time 0.027 seconds

Analysis of Utilization Characteristics, Health Behaviors and Health Management Level of Participants in Private Health Examination in a General Hospital (일개 종합병원의 민간 건강검진 수검자의 검진이용 특성, 건강행태 및 건강관리 수준 분석)

  • Kim, Yoo-Mi;Park, Jong-Ho;Kim, Won-Joong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.1
    • /
    • pp.301-311
    • /
    • 2013
  • This study aims to analyze characteristics, health behaviors and health management level related to private health examination recipients in one general hospital. To achieve this, we analyzed 150,501 cases of private health examination data for 11 years from 2001 to 2011 for 20,696 participants in 2011 in a Dae-Jeon general hospital health examination center. The cluster analysis for classify private health examination group is used z-score standardization of K-means clustering method. The logistic regression analysis, decision tree and neural network analysis are used to periodic/non-periodic private health examination classification model. 1,000 people were selected as a customer management business group that has high probability to be non-periodic private health examination patients in new private health examination. According to results of this study, private health examination group was categorized by new, periodic and non-periodic group. New participants in private health examination were more 30~39 years old person than other age groups and more patients suspected of having renal disease. Periodic participants in private health examination were more male participants and more patients suspected of having hyperlipidemia. Non-periodic participants in private health examination were more smoking and sitting person and more patients suspected of having anemia and diabetes mellitus. As a result of decision tree, variables related to non-periodic participants in private health examination were sex, age, residence, exercise, anemia, hyperlipidemia, diabetes mellitus, obesity and liver disease. In particular, 71.4% of non-periodic participants were female, non-anemic, non-exercise, and suspicious obesity person. To operation of customized customer management business for private health examination will contribute to efficiency in health examination center.

The Comparison of Risk-adjusted Mortality Rate between Korea and United States (한국과 미국 의료기관의 중증도 보정 사망률 비교)

  • Chung, Tae-Kyoung;Kang, Sung-Hong
    • Journal of Digital Convergence
    • /
    • v.11 no.5
    • /
    • pp.371-384
    • /
    • 2013
  • The purpose of this study was to develop the risk-adjusted mortality model using Korean Hospital Discharge Injury data and US National Hospital Discharge Survey data and to suggest some ways to manage hospital mortality rates through comparison of Korea and United States Hospital Standardized Mortality Ratios(HSMR). This study used data mining techniques, decision tree and logistic regression, for developing Korea and United States risk-adjustment model of in-hospital mortality. By comparing Hospital Standardized Mortality Ratio(HSMR) with standardized variables, analysis shows the concrete differences between the two countries. While Korean Hospital Standardized Mortality Ratio(HSMR) is increasing every year(101.0 in 2006, 101.3 in 2007, 103.3 in 2008), HSMR appeared to be reduced in the United States(102.3 in 2006, 100.7 in 2007, 95.9 in 2008). Korean Hospital Standardized Mortality Ratios(HSMR) by hospital beds were higher than that of the United States. A two-aspect approach to management of hospital mortality rates is suggested; national and hospital levels. The government is to release Hospital Standardized Mortality Ratio(HSMR) of large hospitals and to offer consulting on effective hospital mortality management to small and medium hospitals.

A Study on Strategy for success of tourism e-marketplace (관광 e-마켓플레이스의 성공전략에 관한 연구)

  • Hong, Ji-Whan;Kim, Keun-Hyung
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2006.11a
    • /
    • pp.333-336
    • /
    • 2006
  • E-marketplace is a kind of B2B e-Business system that supports business transactions among companies. If e-marketplace is revitalized, we expect not only the development of related industry but also decrease of transaction cost among companies. It is necessary for the introduction and revitalization of e-marketplace in tourist industry from this point of view. Participants of tour e-marketplace are tour-related companies(travel agencies, lodging enterprises, shipping enterprises, etc.). Also tourists want to search a variety of tour products or contents. So tour e-marketplace has characteristics of B2C e-Business systems as well as B2B e-Business systems at once. The purpose of this study is to classify success factors that determine characteristics of tour e-marketplace through statistics survey from e-marketplace factors related tourism websites. First of all, we analyze success factors of B2B and B2C e-marketplace. Then we will set up influence factors of tour e-marketplace and conduct a survey about success factors of tour e-marketplace. Therefore, we could expect to find these good attributes in tour e-marketplace success through logistic regression and decision tree analysis from source data.

  • PDF

An Optimized Combination of π-fuzzy Logic and Support Vector Machine for Stock Market Prediction (주식 시장 예측을 위한 π-퍼지 논리와 SVM의 최적 결합)

  • Dao, Tuanhung;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.4
    • /
    • pp.43-58
    • /
    • 2014
  • As the use of trading systems has increased rapidly, many researchers have become interested in developing effective stock market prediction models using artificial intelligence techniques. Stock market prediction involves multifaceted interactions between market-controlling factors and unknown random processes. A successful stock prediction model achieves the most accurate result from minimum input data with the least complex model. In this research, we develop a combination model of ${\pi}$-fuzzy logic and support vector machine (SVM) models, using a genetic algorithm to optimize the parameters of the SVM and ${\pi}$-fuzzy functions, as well as feature subset selection to improve the performance of stock market prediction. To evaluate the performance of our proposed model, we compare the performance of our model to other comparative models, including the logistic regression, multiple discriminant analysis, classification and regression tree, artificial neural network, SVM, and fuzzy SVM models, with the same data. The results show that our model outperforms all other comparative models in prediction accuracy as well as return on investment.

A Study on Self-sufficiency for Hospital Injury Inpatients in Korea (우리나라 의료기관 입원손상환자의 자체충족도에 관한 연구)

  • Lee, Hee-Won;Park, Jong-Ho;Kang, Sung-Hong;Kim, Won-Joong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.12
    • /
    • pp.5779-5788
    • /
    • 2011
  • This study was conducted to comprehend the current status of regional self-sufficiency of Hospital injury inpatients and, based on this, to prepare some measures for improving the self-sufficiency. For this purpose, 2005 & 2008 Patient Survey data, regional medical utilization data of National Health Insurance Corporation, yearbook of Central Emergency Medical Center and evaluation results of emergency medical institutions were obtained. Frequency analysis, cross-tabulation, decision tree and logistic regression techniques were used in the analysis of data. Self-sufficiency in 'metropolitan city/Do' area was lowest for Chungcheongnam-do for the year 2005 and 2008, followed by Gyeongsangbuk-do, Gyeonggi-do and Jeollanam-do. As for the self-sufficiency in 'Si/Gun/Gu' area with regard to local medical supply, for both 2005 and 2008, It was higher when general hospital, district emergency medical center, regional emergency medical center and regional emergency medical institution existed in the residential area. It was also found that, the higher the quality level of local emergency medical institution, the higher the self-sufficiency. It was confirmed that, when promoting the national policy for injury patients, priority should be placed on 'Do' area where the level of emergency medical supply was low, and that enhancing the quality level of emergency medical institutions was helpful for the improvement of self-sufficiency.

Group Classification on Management Behavior of Diabetic Mellitus (당뇨 환자의 관리행태에 대한 군집 분류)

  • Kang, Sung-Hong;Choi, Soon-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.2
    • /
    • pp.765-774
    • /
    • 2011
  • The purpose of this study is to provide informative statistics which can be used for effective Diabetes Management Programs. We collected and analyzed the data of 666 diabetic people who had participated in Korean National Health and Nutrition Examination Survey in 2007 and 2008. Group classification on management behavior of Diabetic Mellitus is based on the K-means clustering method. The Decision Tree method and Multiple Regression Analysis were used to study factors of the management behavior of Diabetic Mellitus. Diabetic people were largely classified into three categories: Health Behavior Program Group, Focused Management Program Group, and Complication Test Program Group. First, Health Behavior Program Group means that even though drug therapy and complication test are being well performed, people should still need to improve their health behavior such as exercising regularly and avoid drinking and smoking. Second, Focused Management Program Group means that they show an uncooperative attitude about treatment and complication test and also take a passive action to improve their health behavior. Third, Complication Test Program Group means that they take a positive attitude about treatment and improving their health behavior but they pay no attention to complication test to detect acute and chronic disease early. The main factor for group classification was to prove whether they have hyperlipidemia or not. This varied widely with an individual's gender, income, age, occupation, and self rated health. To improve the rate of diabetic management, specialized diabetic management programs should be applied depending on each group's character.

Factors analysis of the cyanobacterial dominance in the four weirs installed in of Nakdong River (낙동강의 중·하류 4개보에서 남조류 우점 환경 요인 분석)

  • Kim, Sung jin;Chung, Se woong;Park, Hyung seok;Cho, Young cheol;Lee, Hee suk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.413-413
    • /
    • 2019
  • 하천과 호수에서 남조류의 이상 과잉증식 문제(이하 녹조문제)는 담수생태계의 생물다양성을 감소시키며, 음용수의 이취미 원인물질을 발생시켜 물 이용에 장해가 된다. 또한 독소를 생산하는 유해남조류가 대량 증식할 경우에는 가축이나 인간의 건강에 치명적 해를 끼치기도 한다. 그 동안 국내에서 녹조문제는 댐 저수지와 하구호와 같은 정체수역에서 간헐적으로 문제를 일으켰으나, 4대강사업(2010-2011)으로 16개의 보가 설치된 이후 낙동강, 금강, 영산강 등 대하천에서도 광범위하게 발생되고 있어 중요한 사회적 환경적 이슈로 대두되었다. 한편, 대하천에 설치된 보 구간에서 빈번히 발생하는 녹조현상의 원인에 대해서는 전 지구적 기온상승에 따른 기후변화의 영향이라는 주장과 유역으로부터 영양염류의 과도한 유입, 가뭄에 따른 유량감소, 보 설치에 따른 체류시간 증가 등 다양한 의견이 제시되고 있으나, 대상 유역과 수체의 특성에 따라 녹조 발생의 원인이 상이하거나 또는 다양한 요인이 복합적으로 작용하기 때문에 보편적 해석(universal interpretation)이 어려운 것이 현실이다. 따라서 각 수계별, 보별 녹조현상에 대한 정확한 원인분석과 효과적인 대책 마련을 위해서는 집중된 실험자료와 데이터마이닝 기법에 근거로 한 보다 과학적이고 객관적인 접근이 이루어져야 한다. 본 연구에서는 2012년 보 설치 이후 남조류에 의한 녹조현상이 빈번히 발생하고 있는 낙동강 4개보(강정고령보, 달성보, 합천창녕보, 창녕함안보)를 대상으로 집중적인 현장조사와 실험분석을 수행하고, 수집된 기상, 수문, 수질, 조류 자료에 대해 통계분석과 다양한 데이터모델링 기법을 적용하여 보별 남조류 우점 환경조건과 이를 제어하기 위한 주요 조절변수를 규명하는데 있다. 연구대상 보 별 수질과 식물플랑크톤의 정성 및 정량 실험은 2017년 5월부터 2018년 11월까지 2년에 걸쳐 실시하였으며, 남조류 세포수 밀도와 환경요인과의 상관성 분석을 실시하고, 단계적 다중회귀모델(Step-wise Multiple Linear Regressions, SMLR), 랜덤포레스트(Random Forests, RF) 모델과 재귀적 변수 제거 기법(Recursive Feature Elimination using Random Forest, RFE-RF)을 이용한 변수중요도 평가, 의사결정나무(Decision Tree, DT), 주성분분석(Principal Component Analysis, PCA) 기법 등 다양한 모수적 및 비모수적 데이터마이닝 결과를 바탕으로 각 보별 남 조류 우점 환경요인을 종합적으로 해석하였다.

  • PDF

Artificial Intelligence Techniques for Predicting Online Peer-to-Peer(P2P) Loan Default (인공지능기법을 이용한 온라인 P2P 대출거래의 채무불이행 예측에 관한 실증연구)

  • Bae, Jae Kwon;Lee, Seung Yeon;Seo, Hee Jin
    • The Journal of Society for e-Business Studies
    • /
    • v.23 no.3
    • /
    • pp.207-224
    • /
    • 2018
  • In this article, an empirical study was conducted by using public dataset from Lending Club Corporation, the largest online peer-to-peer (P2P) lending in the world. We explore significant predictor variables related to P2P lending default that housing situation, length of employment, average current balance, debt-to-income ratio, loan amount, loan purpose, interest rate, public records, number of finance trades, total credit/credit limit, number of delinquent accounts, number of mortgage accounts, and number of bank card accounts are significant factors to loan funded successful on Lending Club platform. We developed online P2P lending default prediction models using discriminant analysis, logistic regression, neural networks, and decision trees (i.e., CART and C5.0) in order to predict P2P loan default. To verify the feasibility and effectiveness of P2P lending default prediction models, borrower loan data and credit data used in this study. Empirical results indicated that neural networks outperforms other classifiers such as discriminant analysis, logistic regression, CART, and C5.0. Neural networks always outperforms other classifiers in P2P loan default prediction.

Exploring Feature Selection Methods for Effective Emotion Mining (효과적 이모션마이닝을 위한 속성선택 방법에 관한 연구)

  • Eo, Kyun Sun;Lee, Kun Chang
    • Journal of Digital Convergence
    • /
    • v.17 no.3
    • /
    • pp.107-117
    • /
    • 2019
  • In the era of SNS, many people relies on it to express their emotions about various kinds of products and services. Therefore, for the companies eagerly seeking to investigate how their products and services are perceived in the market, emotion mining tasks using dataset from SNSs become important much more than ever. Basically, emotion mining is a branch of sentiment analysis which is based on BOW (bag-of-words) and TF-IDF. However, there are few studies on the emotion mining which adopt feature selection (FS) methods to look for optimal set of features ensuring better results. In this sense, this study aims to propose FS methods to conduct emotion mining tasks more effectively with better outcomes. This study uses Twitter and SemEval2007 dataset for the sake of emotion mining experiments. We applied three FS methods such as CFS (Correlation based FS), IG (Information Gain), and ReliefF. Emotion mining results were obtained from applying the selected features to nine classifiers. When applying DT (decision tree) to Tweet dataset, accuracy increases with CFS, IG, and ReliefF methods. When applying LR (logistic regression) to SemEval2007 dataset, accuracy increases with ReliefF method.

Convergence Study in Development of Severity Adjustment Method for Death with Acute Myocardial Infarction Patients using Machine Learning (머신러닝을 이용한 급성심근경색증 환자의 퇴원 시 사망 중증도 보정 방법 개발에 대한 융복합 연구)

  • Baek, Seol-Kyung;Park, Hye-Jin;Kang, Sung-Hong;Choi, Joon-Young;Park, Jong-Ho
    • Journal of Digital Convergence
    • /
    • v.17 no.2
    • /
    • pp.217-230
    • /
    • 2019
  • This study was conducted to develop a customized severity-adjustment method and to evaluate their validity for acute myocardial infarction(AMI) patients to complement the limitations of the existing severity-adjustment method for comorbidities. For this purpose, the subjects of KCD-7 code I20.0 ~ I20.9, which is the main diagnosis of acute myocardial infarction were extracted using the Korean National Hospital Discharge In-depth Injury survey data from 2006 to 2015. Three tools were used for severity-adjustment method of comorbidities : CCI (charlson comorbidity index), ECI (Elixhauser comorbidity index) and the newly proposed CCS (Clinical Classification Software). The results showed that CCS was the best tool for the severity correction, and that support vector machine model was the most predictable. Therefore, we propose the use of the customized method of severity correction and machine learning techniques from this study for the future research on severity adjustment such as assessment of results of medical service.