• Title/Summary/Keyword: 회귀분포

Search Result 981, Processing Time 0.026 seconds

An Estimation of Regression Equation for Temporal Distribution of Design Rainfall Using Variable Selection Method (변수선택 방법을 이용한 설계강우량 시간분포 회귀식의 산정)

  • Lee, Sung Ho;Lee, Jae Joon;Park, Jin Hee;Rhee, Dong Sop
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.169-169
    • /
    • 2018
  • 국내에서는 유량자료의 부족으로 수공구조물을 설계하기 위한 기초자료로서 설계강우량을 활용하고 있다. 따라서 설계강우량의 산정 및 시간분포가 중요한 요인으로 작용하고 있으며, 국내에서는 설계강우량 시간분포를 위한 방법으로 Huff의 4분위 방법을 사용하는 것이 일반적이다. 실무에서는 확률강우량도 개선 및 보완연구(Ministry of Land, Transport and Maritime Affairs, 2011)에서 제시한 관측소별 Huff의 무차원 누가우량 백분율을 이용하여 Huff의 4분위 방법 중 3분위의 자료를 이용하여 시간분포 회귀식을 산정하고 있으며, 회귀식의 차수는 전반적으로 결정계수가 높은 6차식을 사용하고 있다. 회귀식의 경우 고차식으로 갈수록 결정계수가 높아지는 것은 당연하지만 4차 이상의 회귀식에서는 결정계수의 차이가 미미하므로 6차식을 사용하는 것이 합리적이라고 할 수 없다. 따라서 본 연구에서는 통계적 유의수준에 기초하여 Huff 4분위 방법의 시간분포 회귀식에 대한 유의성 검정을 실시하여 회귀계수에 대한 통계적 검증을 실시하고 변수선택 방법인 전방선택법(Forward Selection)을 이용하여 유의하지 않은 회귀계수들을 제외하면서 가장 좋은 변수들로 구성된 간결한 설계강우량 시간분포 회귀식을 산정하고자 한다. 또한 산정된 회귀식과 기존 확률강우량도 개선 및 보완연구(Ministry of Land, Transport and Maritime Affairs, 2011)에서 제시한 회귀식과 비교하여 변수선택 방법인 전방 선택법(Forward Selection)을 이용하여 산정된 회귀식의 적합성을 검증하고자 한다.

  • PDF

Comparison of Regression Coefficient Significance Test for Temporal Distribution by Multiple Regression Analysis Method (다중회귀분석 방법에 따른 시간분포 회귀식의 회귀계수 유의성 검정 비교)

  • Lee, Sung Ho;Lee, Jae Joon;Park, Jin Hee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.205-205
    • /
    • 2019
  • 우리나라에서 강우의 시간분포를 위해 보편적으로 사용되고 있는 방법은 Huff 4분위법으로 강우의 시간적 분포특성을 나타내는 무차원 시간분포곡선을 제시한 것으로, 강우의 지속기간을 4분위로 구분하여 각 분위의 강우량 중 가장 큰 값이 속해 있는 구간을 선택하여 그 구간의 위치에 따라 분위를 정하는 방법이다. 현재 실무에서는 Huff의 분위별 곡선에 대한 회귀식은 지속기간 전반에 걸쳐 정확도가 높은 이유로 6차식을 적용하고 있으나, 통계 모델링에서 간결함의 원리에 따라 회귀식이 간결할 필요가 있으며, 통계적 유의수준에 기초하여 회귀계수를 결정하여야 하므로 유의성 검정 방법을 통한 검정결과를 비교할 필요가 있다. 따라서 본 연구에서는 다중회귀분석 방법에 따른 회귀계수 유의성 검정결과 비교를 위하여 구미지역의 무차원 누가우량 백분율을 이용한 시간분포 회귀식을 이용하여 유의성 검정 방법인 분산분석 방법(Analysis of Variance)과 변수선택 방법(Backward Selection)의 검정 결과를 도출 및 비교하였다. 통계프로그램인 프로그래밍 R을 이용하여 변수선택 방법 중 후방제거법 함수를 이용하여 최종 회귀식을 도출하고 또한 7차 회귀식을 분산분석을 이용한 후방제거법으로 회귀계수를 제거하는 방법으로 최종 회귀식을 산정하였다. 분산분석을 이용한 후방제거법의 유의성 검정결과는 프로그래밍 R을 이용한 후방제거법의 결과와 동일한 것으로 분석되었다. 일반적으로 설계강우량의 시간분포를 위한 방법으로 사용되고 있는 Huff의 4분위 방법의 시간분포 회귀식은 회귀계수의 유의성 검정이 이루어지고 있지 않으므로 본 연구결과를 통해 설계강우량 시간분포 회귀식의 유의성 검정방법 제시 및 결과도출과정을 통해 시간분포 회귀식 산정기법으로 활용할 수 있을 것으로 사료된다.

  • PDF

Comparison Study of Parameter Estimation Methods for Some Extreme Value Distributions (Focused on the Regression Method) (극단치 분포의 모수 추정방법 비교 연구(회귀 분석법을 기준으로))

  • Woo, Ji-Yong;Kim, Myung-Suk
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.3
    • /
    • pp.463-477
    • /
    • 2009
  • Parameter estimation methods such as maximum likelihood estimation method, probability weighted moments method, regression method have been popularly applied to various extreme value models in numerous literature. Among three methods above, the performance of regression method has not been rigorously investigated yet. In this paper the regression method is compared with the other methods via Monte Carlo simulation studies for estimation of parameters of the Generalized Extreme Value(GEV) distribution and the Generalized Pareto(GP) distribution. Our simulation results indicate that the regression method tends to outperform other methods under small samples by providing smaller biases and root mean square errors for estimation of location parameter of the GEV model. For the scale parameter estimation of the GP model under small samples, the regression method tends to report smaller biases than the other methods. The regression method tends to be superior to other methods for the shape parameter estimation of the GEV model and GP model when the shape parameter is -0.4 under small and moderately large samples.

A Study on Randomized Response Regression Estimate from Quantitative Data (양적 확률화응답을 이용한 회귀추정에 관한 연구)

  • 최경호
    • The Korean Journal of Applied Statistics
    • /
    • v.12 no.2
    • /
    • pp.527-535
    • /
    • 1999
  • 양적 확률응답을 이용한 민감사안에 대한 평균이나 분석의 추정시 보조정보를 활용한 회귀추정법에 대해서 언급하고, 유도된 회귀추정량과 Greenberg et al.의 추정량 그리고 비추정량과의 비교의 통하여 회귀추정량이 효율적일 수 있는 조건을 찾았다. 또한 각 질문에 대한 응답의 분포가 포아송 분포인 경우 회귀추정량의 효율이 증대될 수 있는 조건에 대해서도 논하였다.

  • PDF

선형모형에서 오차의 대칭성에 대한 검정과 회귀계수의 추정에 관한 연구

  • 김순옥
    • Communications for Statistical Applications and Methods
    • /
    • v.2 no.1
    • /
    • pp.13-21
    • /
    • 1995
  • 선형모형에서 오차가 대칭인 분포를 따르는지 또는 한쪽으로 치우친(skewed distribution)분포를 따르는지 검정하는 문제를 다루었다. 또 이러한 검정과정을 분석의 예비단계로 하는 회귀계수의 추정방법에 대해서 연구하고, 모의실험을 통해서 회귀계수 추정법들의 효율을 비교하였다.

  • PDF

Quantile regression using asymmetric Laplace distribution (비대칭 라플라스 분포를 이용한 분위수 회귀)

  • Park, Hye-Jung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.6
    • /
    • pp.1093-1101
    • /
    • 2009
  • Quantile regression has become a more widely used technique to describe the distribution of a response variable given a set of explanatory variables. This paper proposes a novel modelfor quantile regression using doubly penalized kernel machine with support vector machine iteratively reweighted least squares (SVM-IRWLS). To make inference about the shape of a population distribution, the widely popularregression, would be inadequate, if the distribution is not approximately Gaussian. We present a likelihood-based approach to the estimation of the regression quantiles that uses the asymmetric Laplace density.

  • PDF

Fitting Distribution of Accident Frequency of Freeway Horizontal Curve Sections & Development of Negative Binomial Regression Models (고속도로 평면선형상 사고빈도분포 추정을 통한 음이항회귀모형 개발 (기하구조요인을 중심으로))

  • 강민욱;도철웅;손봉수
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.7
    • /
    • pp.197-204
    • /
    • 2002
  • 교통사고예측 및 예방을 위해서는 실제적으로 도로설계과정에서 제어가 가능한 도로 기하구조요소에 대한 사고관계를 파악함이 타당하다. 즉, 도로의 설계자는 도로건설에 앞서 기하구조요소와 사고와의 관계를 현장자료를 통해 정확히 밝혀 도로설계에 반영해야 한다. 이를 위해, 교통사고의 빈도분포를 박히는 것은 가장 기본이 되는 일이며, 교통사고 예측모형개발에 선행되어야 한다. 일반적으로 교통사고건수의 경우 분산이 평균보다 큰 과분산(overdispersion)의 특징을 가지고 있어 음이항 분포를 따른다고 알려져 있다. 따라서 본 논문은 사고모형의 개발에 앞서, 사고발생지점에 대한 도로설계요소와 기타 잠재적인 사고발생 관련요인이 비교적 잘 파악되어있는 호남고속도로를 중심으로 평면 선형상 곡선부에 대하여 교통사고의 분포를 적합도 검정을 통해 알아보고자 하였다. 사고자료는 한국도로송사의 호남고속도로 5년(1996∼2000)간 자료를 분석에 맞게 정리하였으며, 강민욱과 송봉수(2002)에서 제시한 평면선형에 있어서의 구간분할법을 이용하여 배향곡선구간과 단일곡선구간에 대한 사고분석을 하였다. 적합도 분석결과, 예상대로 음이항분포가 사고건수를 설명하기에 가장 적합한 확률분포로 제시되었으며, 이를 통해 최우추정법을 이용한 음이항회귀모형을 개발하였다. 구간분할법을 적용한 음이항회귀모형의 경우, 기존의 확률회귀토형에 비하여 높은 결정계수를 갖았으며, 모형에서 적용된 기하구조요소로는 차량 노출계수, 곡선반경, 단위거리 당 편경사변화값 등이다.

Bayesian Inference for Autoregressive Models with Skewed Exponential Power Errors (비대칭 지수멱 오차를 가지는 자기회귀모형에서의 베이지안 추론)

  • Ryu, Hyunnam;Kim, Dal Ho
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.6
    • /
    • pp.1039-1047
    • /
    • 2014
  • An autoregressive model with normal errors is a natural model that attempts to fit time series data. More flexible models that include normal distribution as a special case are necessary because they can cover normality to non-normality models. The skewed exponential power distribution is a possible candidate for autoregressive models errors that may have tails lighter(platykurtic) or heavier(leptokurtic) than normal and skewness; in addition, the use of skewed exponential power distribution can reduce the influence of outliers and consequently increases the robustness of the analysis. We use SIR algorithm and grid method for an efficient Bayesian estimation.

Regional Low Flow Frequency Analysis Using Bayesian Multiple Regression (Bayesian 다중회귀분석을 이용한 저수량(Low flow) 지역빈도분석)

  • Kim, Sang-Ug;Lee, Kil-Seong;Sung, Jin-Young
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.169-173
    • /
    • 2008
  • 본 연구는 저수량 지역 빈도분석(regional low flow frequency analysis)을 수행하기 위하여 일반최소자승법(ordinary least squares method)을 이용한 Bayesian 다중회귀분석을 적용하였으며, 불확실성측면에서의 효과를 탐색하기 위하여 Bayesian 다중회귀분석에 의한 추정치와 t 분포를 이용하여 산정한 일반 다중회귀분석의 추정치의 신뢰구간을 비교분석하였다. 각 재현기간별 비교결과를 보면 t 분포를 이용하여 산정된 평균 추정치와 Bayesian 다중회귀분석에 의한 평균 추정치는 크게 다르지 않았다. 그러나 불확실성 측면에서 평가해볼 때 신뢰구간의 상한추정치와 하한추정치의 차이는 Bayesian 다중회귀분석을 사용한 경우가 기존 방법을 사용한 경우보다 훨씬 작은 것으로 나타났으며, 이로부터 저수량(low flow) 지역 빈도분석을 수행하는 경우 Bayesian 다중회귀분석이 일반 회귀분석보다 불확실성을 표현하는데 있어서 우수하다는 결과를 얻을 수 있었다. 또한 낙동강 유역에 2개의 미계측 유역을 선정하고 구축된 Bayesian 다중회귀모형을 적용하여 불확실성을 포함한 미계측 유역에서의 저수량(low flow)을 추정하였으며 이와 같은 방법이 미계측 유역에서의 저수(low flow) 특성을 나타내는 데 있어서 효과적일 수 있음을 입증하였다.

  • PDF

Concept of Trend Analysis of Hydrologic Extreme Variables and Nonstationary Frequency Analysis (극치수문자료의 경향성 분석 개념 및 비정상성 빈도해석)

  • Lee, Jeong-Ju;Kwon, Hyun-Han;Kim, Tae-Woong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1448-1452
    • /
    • 2010
  • 최근 기상변동성 증가 및 기후변화 영향으로 수문순환과정이 과거와는 다른 양상으로 전개되고 있으며 전반적으로 극치사상의 빈도 및 강도의 증가현상이 지배적이다. 이러한 영향을 정량적으로 검토하기 위해서 경향성분석 방법 등이 도입되어 극치수문사상의 변동경향을 평가하는데 이용되고 있다. 대표적인 방법으로 선형회귀분석, Mann-Kendall 경향성 분석 등이 있으나 기본적인 가정(assumption)의 제약으로 극치수문자료 계열의 특성을 효과적으로 분석하는데 무리가 있다. 대표적이고 일반적으로 적용되는 선형회귀분석의 경우 자료가 정규분포(normal distribution)의 특성을 가질 때 유효한 방법으로서 극치수문자료와 같이 Heavy Tail를 가지는 분포특성을 표현하는 데는 무리가 따른다. 이밖에도 기존 선형회귀분석을 극치수문자료에 적용할 경우 추정된 결과를 수자원설계의 관심사항인 빈도해석 등에 직접적으로 연계시켜 해석할 수 없는 단점이 있다. 이는 자료계열의 분포특성을 정규분포로 가정하기 때문에 발생하는 문제로서 극치수문자료계열의 분포 특성을 반영할 수 있는 방법론의 개발이 필요하다. 본 연구에서는 이러한 점을 개선하기 위해서 극치분포(extreme distribution)를 선형회귀분석에 적용하는 비정상성빈도해석(nonstationary frequency analysis) 방법론의 개념을 제시하고자 한다. 비정상성빈도해석을 위해서 Bayesian 기법이 도입되며 Bayesian 기법의 특성상 관련변수들이 사후분포(posterior distribution)로 귀결되기 때문에 경향성에 대한 정량적이고 확률적인 분석이 가능한 장점이 있다. 본 연구를 통해 개발된 방법론은 국내외 주요 강수지점에 대해서 적용되며 경향성, 분포특성, 빈도별 강수량에 대한 체계적인 분석이 이루어진다.

  • PDF