Korean Journal of Agricultural and Forest Meteorology
/
v.8
no.4
/
pp.209-221
/
2006
The purpose of this study is to analyze the effects of climate change on the nonpoint source pollution in a small watershed using a mid-range model. The study area is a basin in a rural area that covers 384 ha with a composition of 50% forest and 19% paddy. The hydrologic and water quality data were monitored from 1996 to 2004, and the feasibility of the GWLF (Generalized Watershed Loading function) model was examined in the agricultural small watershed using the data obtained from the study area. As one of the studies on climate change, KEI (Korea Environment Institute) has presented the monthly variation ratio of rainfall in Korea based on the climate change scenario for rainfall and temperature. These values and observed daily rainfall data of forty-one years from 1964 to 2004 in Suwon were used to generate daily weather data using the stochastic weather generator model (WGEN). Stream runoff was calibrated by the data of $1996{\sim}1999$ and was verified in $2002{\sim}2004$. The results were determination coeff, ($R^2$) of $0.70{\sim}0.91$ and root mean square error (RMSE) of $2.11{\sim}5.71$. Water quality simulation for SS, TN and TP showed $R^2$ values of 0.58, 0.47 and 0.62, respectively, The results for the impact of climate change on nonpoint source pollution show that if the factors of watershed are maintained as in the present circumstances, pollutant TN loads and TP would be expected to increase remarkably for the rainy season in the next fifty years.
The object of this study was to evaluate the effects of climatic elements on potato yield and create a model for estimating the potato yield. We used 35 yield data of Sumi variety produced in mulching cultivation from 17 regions over 11 years. According to the results, some climatic elements showed significant level of correlation coefficient with marketable yield of potato. Totally 22 items of climatic elements appeared to be significant. Especially precipitation for 20 days after planting (Prec_1 & 2), relative humidity during 11~20 days after planting (RH_2), precipitation for 20 days before harvest (Prec_9 & 10), sunshine hours during 50~41 days before harvest (SH_6) and 20 days before harvest (SH_9 & 10), and days of rain during 10 days before harvest (DR_10) were highly significant in quadratic regression analysis. 22 items of predicted yield ($Y_i=aX_i{^2}+bX_i+c$) were induced from the 22 items of climatic elements (step 1). The correlations between the predicted yields and marketable yield were stepwised using SPSS, statistical program, and we selected a model (step 2), in which 4 items of independent variables ($Y_i$) were used. Subsequently the $Y_i$ were replaced with the equation in step 1, $aX_i{^2}+bX_i+c$. Finally we derived the model to predict the marketable yield of potato as below. $$Y=-336{\times}DR_-10^2+854{\times}DR_-10-0.422{\times}Prec_-9^2+43.3{\times}Prec_-9\\-0.0414{\times}RH_-2^2+46.2{\times}RH_-2-0.0102{\times}Prec_-2^2-7.00{\times}Prec_-2-10039$$.
As social data become into the spotlight, mainstream web search engines provide data indicate how many people searched specific keyword: Web Search Traffic data. Web search traffic information is collection of each crowd that search for specific keyword. In a various area, web search traffic can be used as one of useful variables that represent the attention of common users on specific interests. A lot of studies uses web search traffic data to nowcast or forecast social phenomenon such as epidemic prediction, consumer pattern analysis, product life cycle, financial invest modeling and so on. Also web search traffic data have begun to be applied to predict tourist inbound. Proper demand prediction is needed because tourism is high value-added industry as increasing employment and foreign exchange. Among those tourists, especially Chinese tourists: Youke is continuously growing nowadays, Youke has been largest tourist inbound of Korea tourism for many years and tourism profits per one Youke as well. It is important that research into proper demand prediction approaches of Youke in both public and private sector. Accurate tourism demands prediction is important to efficient decision making in a limited resource. This study suggests improved model that reflects latest issue of society by presented the attention from group of individual. Trip abroad is generally high-involvement activity so that potential tourists likely deep into searching for information about their own trip. Web search traffic data presents tourists' attention in the process of preparation their journey instantaneous and dynamic way. So that this study attempted select key words that potential Chinese tourists likely searched out internet. Baidu-Chinese biggest web search engine that share over 80%- provides users with accessing to web search traffic data. Qualitative interview with potential tourists helps us to understand the information search behavior before a trip and identify the keywords for this study. Selected key words of web search traffic are categorized by how much directly related to "Korean Tourism" in a three levels. Classifying categories helps to find out which keyword can explain Youke inbound demands from close one to far one as distance of category. Web search traffic data of each key words gathered by web crawler developed to crawling web search data onto Baidu Index. Using automatically gathered variable data, linear model is designed by multiple regression analysis for suitable for operational application of decision and policy making because of easiness to explanation about variables' effective relationship. After regression linear models have composed, comparing with model composed traditional variables and model additional input web search traffic data variables to traditional model has conducted by significance and R squared. after comparing performance of models, final model is composed. Final regression model has improved explanation and advantage of real-time immediacy and convenience than traditional model. Furthermore, this study demonstrates system intuitively visualized to general use -Youke Mining solution has several functions of tourist decision making including embed final regression model. Youke Mining solution has algorithm based on data science and well-designed simple interface. In the end this research suggests three significant meanings on theoretical, practical and political aspects. Theoretically, Youke Mining system and the model in this research are the first step on the Youke inbound prediction using interactive and instant variable: web search traffic information represents tourists' attention while prepare their trip. Baidu web search traffic data has more than 80% of web search engine market. Practically, Baidu data could represent attention of the potential tourists who prepare their own tour as real-time. Finally, in political way, designed Chinese tourist demands prediction model based on web search traffic can be used to tourism decision making for efficient managing of resource and optimizing opportunity for successful policy.
Journal of the Korean Society for Nondestructive Testing
/
v.29
no.4
/
pp.316-322
/
2009
This paper presents a preliminary study to monitor the lateral behavior of pile foundation using multiplexed fiber Bragg grating(FBG) sensors. In the Preliminary study, an 1.7 meter long cantilever beam with the shape of square hollow box was fabricated and tested under the static loading. Four FBG sensors were multiplexed in a single optical fiber and installed into the top and bottom of the cantilever beam. The strains are directly measured from FBG sensors followed by curvature calculations based on the plane section assumption. Vertical deflections are then estimated using the regression analyses based on the geometric relationships. It has been found that excellent correlation with conventional sensing system was observed. The success of the test encourages the use of the FBG sensing system as a monitoring system for pile foundations. However, further consideration should be given in the case of the sensor malfunction for the practical purpose.
Journal of Korean Society of Coastal and Ocean Engineers
/
v.32
no.6
/
pp.384-395
/
2020
Breaking waves generated by wave shoaling in coastal areas have a close relationship with various physical phenomena in coastal regions, such as sediment transport, longshore currents, and shock wave pressure. Therefore, it is crucial to accurately predict breaker index such as breaking wave height and breaking depth, when designing coastal structures. Numerous scientific efforts have been made in the past by many researchers to identify and predict the breaking phenomenon. Representative studies on wave breaking provide many empirical formulas for the prediction of breaking index, mainly through hydraulic model experiments. However, the existing empirical formulas for breaking index determine the coefficients of the assumed equation through statistical analysis of data under the assumption of a specific equation. In this paper, we applied a representative linear-based supervised machine learning algorithms that show high predictive performance in various research fields related to regression or classification problems. Based on the used machine learning methods, a model for prediction of the breaking index is developed from previously published experimental data on the breaking wave, and a new linear equation for prediction of breaker index is presented from the trained model. The newly proposed breaker index formula showed similar predictive performance compared to the existing empirical formula, although it was a simple linear equation.
Park, Min Ji;Shin, Hyung Jin;Park, Geun Ae;Kim, Seong Joon
KSCE Journal of Civil and Environmental Engineering Research
/
v.30
no.4B
/
pp.337-346
/
2010
Climate change has a huge impact on various parts of the world. This study quantified and analyzed the effects on hydrological behavior caused by climate, vegetation canopy and land use change of Soyanggang dam watershed (2,694.4 $km^2$) using the semi-distributed model SWAT (Soil Water Assessment Tool). For the 1997-2006 daily dam inflow data, the model was calibrated with the Nash-Sutcliffe model efficiencies between the range of 0.45 and 0.91. For the future climate change projection, three GCMs of MIROC3.2hires, ECHAM5-OM, and HadCM3 were used. The A2, A1B and B1 emission scenarios of IPCC (Intergovernmental Panel on Climate Change) were adopted. The data was corrected for each bias and downscaled by Change Factor (CF) method using 30 years (1977-2006, baseline period) weather data and 20C3M (20th Century Climate Coupled Model). Three periods of data; 2010-2039 (2020s), 2040-2069 (2050s), 2070-2099 (2080s) were prepared for future evaluation. The future annual temperature and precipitation were predicted to change from +2.0 to $+6.3^{\circ}C$ and from -20.4 to 32.3% respectively. Seasonal temperature change increased in all scenarios except for winter period of HadCM3. The precipitation of winter and spring increased while it decreased for summer and fall for all GCMs. Future land use and vegetation canopy condition were predicted by CA-Markov technique and MODIS LAI versus temperature regression respectively. The future hydrological evaluation showed that the annual evapotranspiration increases up to 30.1%, and the groundwater recharge and soil moisture decreases up to 55.4% and 32.4% respectively compared to 2000 condition. Dam inflow was predicted to change from -38.6 to 29.5%. For all scenarios, the fall dam inflow, soil moisture and groundwater recharge were predicted to decrease. The seasonal vapotranspiration was predicted to increase up to 64.2% for all seasons except for HadCM3 winter.
An, Ji Hyun;Song, Jung Hun;Kang, Moon Seong;Song, Inhong;Jun, Sang Min;Park, Jihoon
Journal of The Korean Society of Agricultural Engineers
/
v.57
no.4
/
pp.121-133
/
2015
The TANK model has been widely used in rainfall-runoff modeling due to its simplicity of concept and computation while achieving forecast accuracy. A major barrier to the model application is to determine parameter values for ungauged watersheds, leading to the need of a method for the parameter estimation. The objective of this study was to develop regression equations for estimating the 3th TANK model parameters considering their variations for the ungauged watersheds. Thirty watersheds of dam sites and stream stations were selected for this study. A genetic algorithm was used to optimize TANK model parameters. Watershed characteristics used in this study include land use percent, watershed area, watershed length, and watershed average slope. Generalized equations were derived by correlating to the optimized parameters and the watershed characteristics. The results showed that the TANK model, with the parameters determined by the developed regression equations, performed reasonably with 0.60 to 0.85 of Nash-Sutcliffe efficiency for daily runoff. The developed regression equations for the TANK model can be applied for the runoff simulation particularly for the ungauged watersheds, which is common for upstream of agricultural reservoirs in Korea.
Modern commercial greenhouse requires the use of advanced climate control system to improve crop production and to reduce energy consumption. As an alternative to classical sensor-based control method, this paper introduces a model-based control method that consists of two models: the predictive model and the evaluation model. As a first step, this paper presents straightforward models to predict the effect of natural ventilation in a greenhouse according to meteorological factors, such as outdoor air temperature, soil temperature, solar radiation and mean wind speed, and structural factor, opening rate of roof ventilators. A multiple regression analysis was conducted to develop the predictive models on the basis of data obtained by computational fluid dynamics (CFD) simulations. The output of the models are air temperature drops due to ventilation at 9 sub-volumes in the greenhouse and individual volumetric ventilation rate through 6 roof ventilators, and showed a good agreement with the CFD-computed results. The resulting predictive models have an advantage of ensuring quick and reasonable predictions and thereby can be used as a part of a real-time model-based control system for a naturally ventilated greenhouse to predict the implications of alternative control operation.
Park, Youn Shik;Lee, Ji Min;Jung, Younghun;Shin, Min Hwan;Park, Ji Hyung;Hwang, Hasun;Ryu, Jichul;Park, Jangho;Kim, Ki-Sung
Journal of The Korean Society of Agricultural Engineers
/
v.57
no.2
/
pp.37-45
/
2015
Typically, water quality sampling takes place intermittently since sample collection and following analysis requires substantial cost and efforts. Therefore regression models (or rating curves) are often used to interpolate water quality data. LOADEST has nine regression models to estimate water quality data, and one regression model needs to be selected automatically or manually. The nine regression models in LOADEST and auto-selection by LOADEST were evaluated in the study. Suspended solids data were collected from forty-nine stations from the Water Information System of the Ministry of Environment. Suspended solid data from each station was divided into two groups for calibration and validation. Nash-Stucliffe efficiency (NSE) and coefficient of determination ($R_2$) were used to evaluate estimated suspended solid loads. The regression models numbered 1 and 3 in LOADEST provided higher NSE and $R_2$, compared to the other regression models. The regression modes numbered 2, 5, 6, 8, and 9 in LOADEST provided low NSE. In addition, the regression model selected by LOADEST did not necessarily provide better suspended solid estimations than the other regression models did.
Korean Journal of Agricultural and Forest Meteorology
/
v.4
no.4
/
pp.203-212
/
2002
This study was conducted to remove the urban heat island effects embedded in the interpolated surfaces of daily minimum temperature in the Korean Peninsula. Fifty six standard weather stations are usually used to generate the gridded temperature surface in South Korea. Since most of the weather stations are located in heavily populated and urbanized areas, the observed minimum temperature data are contaminated with the so-called urban heat island effect. Without an appropriate correction, temperature estimates over rural area or forests might deviate significantly from the actual values. We simulated the spatial pattern of population distribution within any single population reporting district (city or country) by allocating the reported population to the "urban" pixels of a land cover map with a 30 by 30 m spacing. By using this "digital population model" (DPM), we can simulate the horizontal diffusion of urban effect, which is not possible with the spatially discontinuous nature of the population statistics fer each city or county. The temperature estimation error from the existing interpolation scheme, which considers both the distance and the altitude effects, was regressed to the DPMs smoothed at 5 different scales, i.e., the radial extent of 0.5, 1.5, 2.5, 3.5 and 5.0 km. Optimum regression models were used in conjunction with the distance-altitude interpolation to predict monthly normals of daily minimum temperature in South Korea far 1971-2000 period. Cross validation showed around 50% reduction in terms of RMSE and MAE over all months compared with those by the conventional method.conventional method.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.