• 제목/요약/키워드: 홴소음

검색결과 114건 처리시간 0.025초

작은 안내 깃이 붙은 원심형 임펠러의 소음 특성에 대한 연구 (A numerical study on the acoustic characteristics of centrifugal impeller with small added vane)

  • 전완호
    • 한국유체기계학회 논문집
    • /
    • 제4권1호
    • /
    • pp.22-29
    • /
    • 2001
  • Centrifugal fans are widely used in industrial practices but the noise generated by these machines causes one of the most serious problems. In general, the centrifugal fan noise is often dominated by tones at BPF(blade passage frequency) and its higher harmonics. This is a consequence of the strong interaction between the flow discharged from the impeller and the cutoff in the easing. However, only a few researches have been carried out on predicting the noise because of the difficulty in obtaining detailed information about the flow field and casing effects on noise radiation. The objective of this study is to develop a prediction method for the unsteady flow field and the acoustic pressure field of a centrifugal fan, and to calculate the effects of small vanes that are attached in original impeller - Splitter impeller. We assume that the impeller rotates with a constant angular velocity and the flow field around the impeller is incompressible and inviscid. So, a discrete vortex method (DVM) is used to model the centrifugal fan and to calculate the flow field. The force of each element on the blade is calculated by the unsteady Bernoulli equation. Lowson's method is used to predict the acoustic source. The splitter impeller changes the acoustic characteristics as well as performance. Two-splitter type impeller and splitter impeller which splitter locates in jet region are good for acoustic characteristics.

  • PDF

진공청소기 원심홴의 유동과 소음원 해석 (An Alysis of Flow and Noise Source for Vacuum Cleaner Centrigugal Fan)

  • 전완호;유기완;이덕주;이승갑
    • 소음진동
    • /
    • 제7권1호
    • /
    • pp.99-106
    • /
    • 1997
  • Centrigugal fans are widely used due to their ability to achieve relatively high pressure ratios in a short axial distance compared to axial fans. Because of their widespread use, the noise generated by these machines causes one of serious problems. In general, centrigugal fan noise is often dominated by tones at BPF(blade passage frequency) and its higher harmonics. This is a consequence of the strong interaction between the periodic flow discharged radially from the impeller and the stator blades or the cutoff. But in vacuum cleaner fan the noise is dominated by not only the discrete tones of BPF but also broadband frequencies. In this study we investigate the mechanism of broadband noise and predict for the unsteady flow field and the acoustic pressure field associated with the centrifugal fan. DVM(discrete vortex method) is used to calculates the flow field and the Lowson's method is used to predict the acoustic pressures. From the results we find that the broadband noise of a circular casing centrifugal fan is due to the unsteady force fluctuation around the impeller blades related to the vortex shedding. The unsteady forces associated with the shed vortices at impeller and related to the interactions to the diffuser and the exit.

  • PDF

축류형 홴 성능 및 소음에 영향을 미치는 설계변수 분석 (Design Parameter Analysis on the Performance and Noise of Axial Fan)

  • 김기황;이승배;주재만
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 I
    • /
    • pp.275-281
    • /
    • 2001
  • While basic input parameters for the performance and noise of axial fan are flow rate, pressure rise, rotating speed, and fan diameter, the geometric parameters of blade are sweep angle, solidity, and camber angle. The sweep angle does not affect fan performance much, but on fan noise significantly. Solidity and camber angle are very critical design parameters acting on the fan performance directly. The solidity and camber angle are closely related, therefore they have to be carefully determined for the low-noise and high-performance fan. In This paper, different design points are selceted and also geometric parameters are deliberately changed for the comparison of fan noise. As a result, at the same performance, the input rotational speed affects radiated noise more significantly than others. When solidity and camber angle are increased more than those by iDesignFan/sup TM/ program, more noise is experienced. The blade sweep method and blade numbers at same solidity are observed to results in different levels of performance and noise.

  • PDF

유입 난류에 의한 에어포일 캐스케이드 광대역 소음장의 고주파 근사 예측식의 개발 (High-frequency Approximate Formulation for the Prediction of Broadband Noise of Airfoil Cascades with Inflow Turbulence)

  • 정성수;정완섭;이수갑;정철웅
    • 한국소음진동공학회논문집
    • /
    • 제15권10호
    • /
    • pp.1177-1185
    • /
    • 2005
  • This paper investigates the noise radiated by a cascade of flat-plate airfoils interacting with homogeneous, isotropic turbulence. At frequencies above the critical frequency, all wavenumber components of turbulence excite propagating cascade modes, and cascade effects are shown to be relatively weak. In this frequency range, acoustic power was shown to be approximately proportional to the number of blades. Based on this finding at high frequencies, an approximate expression is derived for the power spectrum that is valid above the critical frequency and which is in excellent agreement with the exact expression for the broadband power spectrum. The approximate expression shows explicitly that the acoustic Power above the critical frequency is proportional to the blade number, independent of the solidity, and varies with frequency as ${\phi}_{ww}(\omega/W$), where ${\phi}_{ww}$ is the wavenumber spectrum of the turbulence velocity and W is mean-flow speed. The formulation is used to perform a parametric study on the effects on the power spectrum of the blade number stagger angle, gap-chord ratio and Mach number. The theory is also shown to provide a close fit to the measured spectrum of rotor-stator interaction when the mean square turbulence velocity and length-scale are chosen appropriately.

저소음 패키지형 공기조화기의 실내기 개발에 관한 연구 (Study on the Development for Low Noise Indoor Unit Package Air-Conditioner)

  • 이재효;조성철;김태헌
    • 설비공학논문집
    • /
    • 제15권6호
    • /
    • pp.518-523
    • /
    • 2003
  • The purpose of this study was to reduce the noise emitted from the package air-conditioner. The optimum design methods of the fans ware investigated experimentally through the analysis of noise problem caused by the conventional PAC system. New PAC system had decreased 6 dBA in overall noise level as compared with the conventional system by various technology.

차량용 MR 홴 클러치 설계 및 제어 (Design and Control of MR Fan Clutch for Automotive Application)

  • 김은석;손정우;최승복
    • 한국소음진동공학회논문집
    • /
    • 제19권8호
    • /
    • pp.795-801
    • /
    • 2009
  • This paper presents an optimal design of a magnetorheological(MR) fan clutch based on finite element analysis and also presents torque control of engine cooling fan using a sliding mode control. The MR fan clutch is constrained in a specific volume and the optimization problem identifies the geometric dimension of the fan clutch that minimizes an objective function. The objective function for the optimization problem is determined based on the solution of the magnetic circuit of the initially designed clutch. Under consideration of spatial limitation, design parameters are optimally determined using finite element analysis. After describing the configuration of the MR fan clutch, the viscous torque and controllable torque are obtained on the basis of the Bingham model of MR fluid. Then, a sliding mode controller is designed to control the torque of the fan clutch according to engine room temperature and control performance is evaluated through computer simulation.

원심형 임펠러의 저소음화에 대한 연구 (A numerical study on the noise reduction methods of centrifugal impeller)

  • 전완호;정필중
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2000년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.129-136
    • /
    • 2000
  • Centrifugal fans are widely used and the noise generated by these machines causes one of the most serious problems. In general, the centrifugal fan noise is often dominated by tones at BPF(blade passage frequency) and its higher harmonics. This is a consequence of the strong interaction between the flow discharged from the impeller and the cutoff in the casing. However, only a few researches have been carried out on predicting the noise because of the difficulty in obtaining detailed Information about the flow field and casing effects on noise radiation. The objective of this study is to develop a prediction method for the unsteady flow field and the acoustic pressure field of a centrifugal fan, and to calculate the effects of small vanes that are attached in original impeller - Splitter impeller. We assume that the impeller rotates with a constant angular velocity and the flow field around the impeller is incompressible and inviscid. So, a discrete vortex method (DVM) is used to model the centrifugal fan and to calculate the flow field. The force of each element on the blade is calculated by the unsteady Bernoulli equation. Lowson's method is used to predict the acoustic source. The splitter impeller changes the acoustic characteristics as well as performance. Two-splitter type impeller and splitter impeller which splitter locates in jet region are good for acoustic characteristics.

  • PDF

비정상 점성유동 해석에 의한 부등피치 횡류홴의 BPF 순음 주파수 변조 특성 예측 (Prediction of Frequency Modulation of BPF Tonal Noise for Random Pitch Cross-Flow Fans by Unsteady Viscous Flow Computations)

  • 조용;문영준
    • 대한기계학회논문집B
    • /
    • 제27권3호
    • /
    • pp.286-293
    • /
    • 2003
  • The unsteady flow characteristics and associated blade tonal noise of a cross-flow fan are predicted by computational methods. The incompressible Navier-Stokes equations are time-accurately solved for obtaining the pressure fluctuations between the rotating blades and the stabilizer. and the sound pressure is predicted using Curie's equation. The discrete noise characteristics of three impellers with a uniform and two random pitch (type-A and -B) blades are compared by their SPL (Sound Pressure Level) spectra. and the frequency modulation characteristics of the BPF (Blade Passing Frequency) noise are discussed. Besides. a mathematical model is proposed for the prediction of discrete blade tonal noise and is validated with available experimental data. The fan performance is also compared with experimental data. indicating that the random pitch effect does not significantly alter the performance characteristics at ${\phi}$ 〉 0.4

Kirchhoff 면을 이용한 홴소음 해석 (Acoustic Analysis of Axial Fan using Kirchhoff Surface)

  • 박용민;송우석;이승배
    • 대한기계학회논문집B
    • /
    • 제27권6호
    • /
    • pp.701-713
    • /
    • 2003
  • The BEM is a highly efficient method in the sense of economical computation. However, boundary integration is not easy for the complex geometry and moving surface, e.g. a rotating blade. Thus, Kirchhoff surface is designed in an effort to overcome the difficulty resulting from complex boundary conditions. A Kirchhoff surface is a fictitious surface which envelopes acoustic sources of main concern. Acoustic sources may be distributed on each Kirchhoff surface element according to their acoustic characteristics. In this study, an axial fan is assumed to have unsteady loading noise as a dominant source. Dipole sources can be modeled to solve the FW-H equation. Acoustic field is then computed by determining Kirchhoff surface on which near-field is implemented, to analyze the effect of Kirchhoff surface on it. The optimal shape and the location of Kirchhoff surface are discussed by comparing with experimental data acquired in an anechoic chamber.

벽걸이에어컨의 원심홴에 대한 과도진동 규명 및 저감 (Transient Vibration Identification and Reduction of a Centrifugal Fan for a Wall-installed Air-conditioner)

  • 김민성;임종혁;정진태
    • 한국소음진동공학회논문집
    • /
    • 제26권4호
    • /
    • pp.383-390
    • /
    • 2016
  • In this paper, experiment and dynamics simulations were carried out to identify and reduce the out-of-plane vibration that occurs in a centrifugal fan of an air conditioner installed to a wall. In a wall-installed air conditioner, large space between a case and heat exchanger is often required for the fan to avoid the collision with the case and exchanger. This large space hinders the slim design of the air conditioner even if air conditioner market demands a slim air conditioner. In the present study, in order to determine the cause of the vibration in the centrifugal fan, the out-of-plane vibration and the physical properties were investigated, and the dynamic characteristics of the centrifugal fan were obtained by experiments. Based on these experiments, a dynamic simulation model was established to determine the cause of the out-of-plane vibration of the centrifugal fan. It was found that the main factor of out-of-plane vibration in the centrifugal fan is the axial misalignment between the centrifugal fan and the motor shaft.