• Title/Summary/Keyword: 황 이용 탈질공법

Search Result 7, Processing Time 0.025 seconds

Development of Biological Denitrification Process using Sulfur for the Wastewater Containing Low BOD (저농도 BOD함유 폐수의 황(S)을 이용한 생물학적 탈질공정 개발 (SPAD 공정))

  • 광주과학기술원, 한국과학기술원;한국과학기술원;동명산업
    • Environmental engineer
    • /
    • v.19 s.186
    • /
    • pp.66-73
    • /
    • 2002
  • 우리나라 하수의 특성이 유기물 농도가 질소 농도에 비하여 매우 낮기 때문에 외국의 종속영양 탈질 공법을 그대로 적용하기가 힘들며 적용한다 할지라도 외부탄소원을 넣어야 하므로 경제적인 처리는 불가능하다. 산업폐수의 경우에 있어서도 유기물농도가 질소농도에 비하여 낮은 폐수의 경우는 값비싼 외부탄소원을 넣어주어야 한다. 따라서 폐수 특성에 맞는 효율적이고 경제적인 질소화합물 제거 기술의 개발은 불가피하다. 따라서 종속영양탈질공정의 경제성 문제 및 기존의 황탈

  • PDF

Development of Biological Denitrification Process Using Sulfur for the Wastewater Containing Low BOD (저농도 BOD함유 폐수의 황(S)을 이용한 생물학적 탈질공정 개발 (SPAD 공정))

  • 김인수;오상은;범민수;이성택;이창수;김민수
    • Environmental engineer
    • /
    • s.183
    • /
    • pp.70-77
    • /
    • 2001
  • 우리나라 하수의 특성이 유기물 농도가 질소농도에 비하여 매우 낮기 때문에 외국의 종속영양 탈질 공법을 그대로 적용하기가 힘들며 적용한다 할지라도 외부탄소원을 넣어야 하므로 경제적인 처리는 불가능하다. 산업폐수의 경우에 있어서도 유기물농도가 질소농도에 비하여 낮은 폐수의 경우는 값비싼 외부탄소원을 넣어주어야 한다. 따라서 폐수 특성에 맞는 효율적이고 경제적인 질소 화합물 제거 기술의 개발은 불가피하다. 따라서 종속영양탈질공정의 경제성 문제 및 기존의 황탈

  • PDF

Removal of Nitrogen Using by SOD Process in the Industrial Wastewater Containing Fluoride and Nitrogen from the Zirconium Aolly Tubing Production Factory of the Nuclear Industry (원자력산업 지르코늄합금 튜브 생산공장에서 배출되는 불소.질소 함유 폐수의 황산화탈질을 이용한 질소처리)

  • Cho, Nam-Chan;Moon, Jong-Han;Ku, Sang-Hyun;Noh, Jae-Soo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.11
    • /
    • pp.855-859
    • /
    • 2011
  • The main pollutants from zirconium alloy tubing manufacturing process in nuclear industry are nitrate ($NO_3-N$) and fluoride (F-)Nitric acid, and hydrofluoric acid is used for acid pickling. The process for the removal of nitrate and fluoride is composed of 1st chemical coagulation, SOD (Sulfur Oxidation Denitrification) process using sulfur-oxidizing denitrification, and 2nd chemical coagulation. The characteristic of the wastewater treatment is an application of SOD process. The SOD Process is highly received attention because it is significantly different from existing processes for sulfur denitrification. A JSC (JeonTech-Sulfur- Calcium) Pellet is unification of sulfur and alkalinity material. According to result of SOD process in wastewater treatment plant, the removal efficiency of T-N was over 91% and the average concentration of T-N from influent was 147.55 mg T-N/L and that from effluent was 12.72 mg T-N/L. Therefore, SOD process is a useful to remove nitrogen from inorganic industrial wastewater and a new development of microbial activator was shown to be stable for activation of autotrophic bacteria.

SPAD(Sulfur Particle Autotrophic Denitrification) 공법의 고농도 질산성 질소 함유 페수에 대한 파일럿 스케일 적용사례

  • Park, U-Sin;Kim, Seong-Yeon;Beom, Min-Su;Kim, In-Su
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.68-71
    • /
    • 2002
  • SPAD(Sulfur Particle Autotrophic Denitrification) process is a biological denitrification process which uses elemental sulfur as an electron donor and a mall amount of organic to assist autotrophic denitrification. $^{1)}$SPAD process was applied to a nitrate containing wastewater (200-300mg $NO_3\;^-$ -N/L) with high concentration of $Ca^{2+}$ ion(5000-15000mg/L) from S. Steel Co. in Ulsan city, to est the feasibility of SPAD process. This pilot was operated from November 2001 to early March 2002, and the inner temperature of the pilot was controlled around $20^{\circ}C$. In spite of low temperature, denitrification efficiency was maintained above 90% achieving the average effluent $NO_3\;^-N$ concentration around 20mg$NO_3\;^-$ -N/L.

  • PDF

Life Cycle Assessment of the Carbon Emissions of MLE process and Denitrification Process Using Granular Sulfur (MLE공법과 황이용 탈질 프로세스의 전과정 탄소 배출량 평가)

  • Moon, Jin-young;Hwang, Yong-woo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.5
    • /
    • pp.619-627
    • /
    • 2012
  • In order to determine reduction of greenhouse gas emissions (GHGs) when the submerged membrane bioreactor with granular sulfur (MBR-GS) is used in wastewater treatment plant (WTP), the amount of GHGs was compared and analyzed in the advanced treatment process of P wastewater treatment plant (WTP). The amount of GHGs was estimated by classifying as construction and operation phase in WTP. The amount of GHGs in construction phase was evaluated from multiplying raw materials by using carbon emission factors. Also the amount of GHGs in operating phase was calculated by using total electricity consumption and carbon emission factor. The construction of anoxic tank and secondary settling tank is unnecessary, because the MBR-GS conducts simultaneously the nitrification and denitrification in aeration tank and filtration by hollow fiber membrane. The amount of $CO_2$, $CH_4$, and $N_2O$ emitted by constructing the MBR-GS was 6.44E+06 kg, 8.16E+03 kg and 1.38E+01 kg, respectively. The result shows that the GHGs was reduced about 47 % as compared with the construction in the MLE process. In operating the MBR-GS, the electricity is not required in the biological reactor and secondary setting tank. Thus, the amount of $CO_2$, $CH_4$, and $N_2O$ emitted by operating in the MBR-GS was 7.39E+05 kg/yr, 5.80E+02 kg/yr and 2.44E+00 kg/yr, respectively. The result shows that the GHGs were reduced about 37 % as compared with the operation in the MLE process. Also, $LCCO_2$(Life Cycle $CO_2$) was compared and analyzed between MLE process and MBR-GS. The amount of $LCCO_2 $emitted from the MLE process and MBR-GS was 3.56E+04 ton $CO_2$ and 2.12E+04 ton $CO_2$, respectively. The result shows that the GHGs in MBR-GS were reduced to about 40 % as compared in the MLE process during life cycle. As a result, sulfur-utilizing autotrophic denitrification process (SADP) is expected to be utilized as the cost-effective advanced treatment process, owing to not only high nitrogen removal efficiency but also the GHGs reduction in construction and operation stage.

Development of High-rate Nitrogen Removal Process Using Submerged MBR Packed with Granular Sulfur of Pilot Scale Plant (Pilot Scale Plant의 황 충진 MBR을 이용한 고효율의 질소제거 공법 개발)

  • Mun, Jin-Yeong;Hwang, Yong-U;Jo, Hyeon-Jeong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.3
    • /
    • pp.383-390
    • /
    • 2011
  • In this study, a process combined biofiltration with sulfur-utilizing autotrophic denitrification and membrane separation was proposed to examine the efficiency of nitrogen removal. As an experimental device, hollow-fiber module was installed in the center of reactor to generate the flux forward sulfur layer in the cylinder packed with granular sulfur. In addition, a simple module was installed in activated sludge aeration tank which inside and outside of sulfur-using denitrification module was covered with microfilter and the module was considered as an alternative of clarifier. The experiment for developing new MBR process was carried out for three years totally. As the results of first two-year experiment, successful nitrogen removal performance was revealed with lab-scale test and pliot scale plant using artificial wastewater and actual plating wastewater. In this year, pilot scale test using actual domestic wastewater was performed to prove field applicability. As the results, high-rate nitrogen removal performance was confirmed with about 0.19 kg ${NO_3}^--N/m^3$ day of rate. Also significant fouling and pressure increase were not found during the experiment. And, the production ratio of sulfate and the consumption ratio of alkalinity showed a slightly higher value about 311 mg ${SO_4}^{2-}/L$ and 369 mg $CaCO_3$/L, respectively. In conclusion, the developed MBR process can be utilized as an alternative for retrofiting existing wastewater plants as well as new construction of advanced sewage wastewater treatment plants, with cost-effective merit.

Innovative Technology of Landfill Stabilization Combining Leachate Recirculation with Shortcut Biological Nitrogen Removal Technology (침출수 재순환과 생물학적 단축질소제거공정을 병합한 매립지 조기안정화 기술 연구)

  • Shin, Eon-Bin;Chung, Jin-Wook;Bae, Woo-Keun;Kim, Seung-Jin;Baek, Seung-Cheon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.9
    • /
    • pp.1035-1043
    • /
    • 2007
  • A leachate containing an elevated concentration of organic and inorganic compounds has the potential to contaminate adjacent soils and groundwater as well as downgradient areas of the watershed. Moreover high-strength ammonium concentrations in leachate can be toxic to aquatic ecological systems as well as consuming dissolved oxygen, due to ammonium oxidation, and thereby causing eutrophication of the watershed. In response to these concerns landfill stabilization and leachate treatment are required to reduce contaminant loading sand minimize effects on the environment. Compared with other treatment technologies, leachate recirculation technology is most effective for the pre-treatment of leachate and the acceleration of waste stabilization processes in a landfill. However, leachate recirculation that accelerates the decomposition of readily degradable organic matter might also be generating high-strength ammonium in the leachate. Since most landfill leachate having high concentrations of nitrogen also contain insufficient quantities of the organic carbon required for complete denitrification, we combined a shortcut biological nitrogen removal (SBNR) technology in order to solve the problem associated with the inability to denitrify the oxidized ammonium due to the lack of carbon sources. The accumulation of nitrite was successfully achieved at a 0.8 ratio of $NO_2^{-}-N/NO_x-N$ in an on-site reactor of the sequencing batch reactor (SBR) type that had operated for six hours in an aeration phase. The $NO_x$-N ratio in leachate produced following SBR treatment was reduced in the landfill and the denitrification mechanism is implied sulfur-based autotrophic denitrification and/or heterotrophic denitrification. The combined leachate recirculation with SBNR proved an effective technology for landfill stabilization and nitrogen removal in leachate.