• Title/Summary/Keyword: 황성

Search Result 2,590, Processing Time 0.027 seconds

SAP R/3

  • 황성영
    • Korea Information Processing Society Review
    • /
    • v.6 no.5
    • /
    • pp.143-146
    • /
    • 1999
  • PDF

Sulfate Modulation for Hydrogen Production by Chlamydomonas reinhardtii in Continuous Culture (Chlamydomonas reinhardtii 연속 배양에서 수소생산을 위안 황 조절)

  • Kim, Jun-Pyo;Park, Tai-Hyun;Kim, Mi-Sun;Sim, Sang-Jun
    • KSBB Journal
    • /
    • v.20 no.6
    • /
    • pp.453-457
    • /
    • 2005
  • We investigated the effect of sulfate re-addition on hydrogen production under sulfur-deprived condition. When the final concentration of sulfate to cell suspensions($0{\sim}120{\mu}M$) was increased, chlorophyll concentration, culture density, and total amount of $H_2$ produced, increased up to an optimal concentration of $30{\mu}M\;MgSO_4$. Maximum hydrogen volume was 236 mL $H_2/L$ culture at $30{\mu}M\;MgSO_4$. However, the addition of excess sulfate(above $MgSO_4\;60{\mu}M$) delayed the start of hydrogen production and the induction of hydrogenase. Accordingly, the final yield of hydrogen production was reduced. Using these results, we attempted the continuous and sustained hydrogen production by sulfate re-addition($30{\mu}M\;MgSO_4$) using a single C. reinhardtii culture for up to 4 cycles. In total, hydrogen production volume was 625 mL $H_2/L$ culture.

Quality Characteristics of Kimchi Prepared with Chinese Radish and Its Quality Change by Freeze-Drying (무 첨가김치의 품질특성과 동결건조에 의한 품질변화)

  • Ko, Young-Tae;Lee, Ju-Youn
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.5
    • /
    • pp.937-942
    • /
    • 2003
  • Kimchi was prepared with 5, 10 or 20%(w/v) Chinese radish and ripened at $20^{\circ}C$ for 3 days. Acid production and growth of lactic acid bacteria, sensory properties, and several volatile odor components in kimchi were examined. The effects of freeze-drying on the quality of kimchi were also studied. The pH of the control (kimchi prepared without Chinese radish) was 4.31 and gradually decreased as the amount of Chinese radish increased. The acidity of the control was 0.673% and gradually increased as the amount of Chinese radish increased. Viable counts of lactic acid bacteria in the samples did not differ significantly from the control. The pH of freeze-dried/rehydrated kimchi slightly decreased as the amount of Chinese radish increased while its acidity gradually increased. The viable count of lactic acid bacteria of freeze-dried/rehydrated kimchi did not differ significantly as the amount of Chinese radish increased. Overall acceptability and taste of kimchi and freeze-dried/rehydrated kimchi generally improved by the addition of 10% or 20% Chinese radish. Six volatile odor components including ethanol and five sulfur-containing components (SCC) were identified from unripened kimchi, and the level of two SCCs increased as the amount of Chinese radish increased. Eight volatile odor components, ethanol and seven SCCs, were identified from ripened kimchi and the level of five SCCs increased as the amount of Chinese radish increased. Diallyl sulfide and methyl trisulfide were newly detected from the ripened samples, but not from the unripened kimchi. Freeze-drying substantially reduced all of the volatile odor components from kimchi. Five volatile odor components including ethanol and four SCCs were identified from the freeze-dried/dehydrated samples.