• Title/Summary/Keyword: 황산염환원

Search Result 119, Processing Time 0.027 seconds

Rates of Sulfate Reduction and Iron Reduction in the Sediment Associated with Abalone Aquaculture in the Southern Coastal Waters of Korea (남해연안 전복양식장 퇴적물의 황산염 환원과 철 환원에 의한 유기물 분해 특성)

  • Kim, Bo-Mi-Na;Choi, A-Yeon;An, Sung-Uk;Kim, Hyung-Chul;Jung, Rae-Hong;Lee, Won-Chan;Hyun, Jung-Ho
    • Ocean and Polar Research
    • /
    • v.33 no.4
    • /
    • pp.435-445
    • /
    • 2011
  • We investigated geochemical properties, and microbial sulfate- and iron(III) reduction in sediment influenced by the aquaculture of abalone in the Nohwa-do, southern coastal sea in Korea. Concentrations of ammonium, phosphate, and sulfide in the pore-water were higher at farm sites than at control sites. The differences between the 2 types of sites were most apparent in terms of the weights of abalone and the temperature increase during September. Accordingly, the rates of sulfate reduction at the farm sites during September (61 mmol S $m^{-2}d{-1}$) were 3-fold higher than the sulfate reduction during May (20 mmol S $m^{-2}d{-1}$). In contrast, Fe(III) reduction rates were highest at the control sites in May, but its significance was relatively decreased at farm sites during September when sulfate reduction rates were highest. During September, benthic ammonium flux was 3-fold greater at the farm sites (35 mmol N $m^{-2}d{-1}$) than at the control sites (12 mmol N $m^{-2}d{-1}$), and phosphate flux was 8-fold higher at the farm sites (0.018 mmol P $m^{-2}d{-1}$) than at control sites (0.003 mmol P $m^{-2}d{-1}$). Overall results indicated that the inappropriate operation of a large-scale aquaculture farm may result in excess input of biodeposits and high nutrient fluxes from the sediment, thereby decreasing diversity of the benthic ecosystem and deepening eutrophication in coastal waters.

A Study on Organic Sludge Application and Duration Estimate for Treating Natural Purification of Acidic Mine Drainage (폐탄광폐수의 자연정화처리를 위한 유기성슬러지 적용 및 지속시간예측에 관한 연구)

  • Kim, Eun-Ho;Kim, Hyeong-Seok;Sung, Nak-Chang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.3
    • /
    • pp.475-484
    • /
    • 2000
  • The purpose of this study was to develop model for estimating biodegrability of organic sludge (sewage and papermill) in various environmental conditions. to assume degradable degree with operating time of SRB reactor. and evaluate duratior of organic sludge as carbon source. Average TCOD was 28.7~63.2mg/L in effluent. organic sludge did not much supply carbon source for experimental period. But in point of durability. it seemed that organic sludge was efficient because it was not consumed by degradation of much organic matter within short period. With increasing $SO_4{^{2-}}$ reduction rate. Pb and Fe was removed 77~82% and 33~59%. respectively. Because Al was precipitated as a hydroxide. its removal rate wa,. about $54{\pm}2%$ in R-l~R-3 maintaining low pH but about 78% in R-4 maintaining high pH. Because Mn was large in solubility. it showed to be much lower than other heavy metals. Considering supportable capacity or durability of orgainc matter for initial SRB mixing ratio of sewage/papermill 0.5 was regarded as appropriate substituting material and at this time. it estimated that carbon source continued about 3.08 year but safety factor must apply to be thought over. because various factors had an effect on degradation of organic sludge.

  • PDF

Biogeochemistry of Metal and Nonmetal Elements in the Surface Sediment of the Gamak Bay (가막간 표층퇴적물 중의 금속 및 비금속 원소의 생지화확적 분포특성)

  • Kim, Pyoung-Joong;Shon, Sang-Gyu;Park, Soung-Yun;Kim, Sang-Soo;Jang, Su-Jeong;Jeon, Sang-Baek;Ju, Jae-Sik
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.2
    • /
    • pp.67-83
    • /
    • 2012
  • In order to evaluate die geochemical characteristics of sediment in a semi-enclosed bay used as shellfish and fish farming area, the concentrations of metallic(V, Cr, Mn, Fe, Co. Ni, Cu, Zn, Ag, Cd, Hg, Ph, As) and non-metallic(P, Se) elements and uranium were measured in the surface sediment samples collected from 19 stations of Gamak Bay in April 2010. Metal contamination status in the sediments were also evaluated using the sediment quality guidelines(SQGs) proposed by the National Oceanic and Atmospheric Administration(NOAA) and the enrichment factor(EF). The concentrations of elements in sediment were mainly controlled by quartz-dilution effect(V, Cr, Fe, Co and Ni), the dilution effect of organic matter(Cd and U), and metal redistribution by the decomposition of organic matter(Mn, Ag, As, and Se). The concentrations of metals, except As and Ni, in sediments from all sampling stations were lower than ERL values of NOAA. Conclusively, the surface sediment of Gamak Bay was slightly polluted with Ni, Ag, Cd, and Cd but was not polluted with other elements on the basis of EF results. Our results suggest that the surface sediment in Gamak Bay is not polluted by metallic elements.

Hydrochemistry and Nitrogen and Sulfur Isotopes of Emergency-use Groundwater in Daeieon City (대전지역 민방위 비상급수용 지하수에 대한 수리화학과 질소 및 황 동위원소 연구)

  • 정찬호
    • The Journal of Engineering Geology
    • /
    • v.13 no.2
    • /
    • pp.239-256
    • /
    • 2003
  • The purpose of this study is to investigate the hydrochemical characteristics of emergency-use groundwater in the Daejeon area, and to elucidate the contamination source of $NO_3-N$ and the origin of sulfate in the groundwater. The groundwater shows weak acidic pH, the electrical conductivity ranging from 142 to $903{\;}\mu\textrm{S}/cm$, and the hydrochemical types of $Ca-HCo_3$ and $Ca-Cl(SO_4,{\;}NO_3)$. The Box-Whisker analysis and the Krigging analysis of chemical data of groundwater were made to demonstrate the concentration distribution of hydrochemical composition, and to compare the trend of hydrochemical data. The groundwater in the area of Dong-gu, Jung-gu and Daeduk-gu, where are old town, shows higher electrical conductivity, nitrate content, sulfate and $EpCO_2$ levels than groundwater in new town area of Seo-gu and Yusung-gu. ${\delta}^{15}N$ of groundwater in the area of Seo-gu and Yusung-gu ranges from +7.4 to $+9.6{\textperthousand}$, indicating that major contamination source of $NO_3-N$ is the leakage from municipal sewage pipe lines. ${\delta}^{15}N$ of groundwater in the old town area of Tong-gu, Jung-gu and Daeduk-gu shows the range between +10.2 and $+23.5{\textperthousand}$, meaning that major contamination source is leakage of septic tank. ${\delta}^{34}S$ of groundwater shows the range of $+3~13.4{\;}{\textperthousand}$. Sulfur isotope indicates the possibility of a sulfate reduction and the input of anthrophogenic source.

A Study Bioremediation of Tidal Flat by Microorganism in Pilot Scale Test (환경정화 미생물에 의한 갯벌의 생물학적 정화에 대한 파일럿 규모의 연구)

  • Choi, Hye Jin;Han, Young Sun;Park, Doo Hyun;Oh, Bo Young;Hur, Myung Je;Jo, Nam-Gyu;Kim, Young Hee;Kim, Jong-Guk
    • Journal of Life Science
    • /
    • v.24 no.10
    • /
    • pp.1110-1117
    • /
    • 2014
  • Tidal flats are continuously contaminated by human activities. This study assessed the bioremediation efficiency of tidal flat soil using microcosm reactors and microorganisms originating from the tidal area. We screened 135 bacterial strains that produce extracellular enzymes from the tidal area located in the North port of Incheon bay. Two bacterial strains (Pseudoalteromonas sp. and IC35 Halothiobacillus neapolitanus IC_S22) were selected and used in the microcosm reactors, which were specially designed to functionally mimic the ecological conditions of the tidal flats. Pseudoalteromonas sp. IC35 was selected based on its relatively high activity of the enzymes amylase, cellulose, lipase, and protease. Halothiobacillus neapolitanus IC_S22 was selected for oxidation of sulfur. The M1 and M2 microcosm reactors were operated by continuous feeding of seawater under the same conditions, but M2 was first inoculated with Pseudoalteromonas sp. IC35 before the seawater feeding. The initial COD in both the M1 and M2 microcosm reactors was 320 mg/l. The final COD was 21 mg/l (M1) and 7 mg/l (M2). The M3 and M4 microcosm reactors were operated by continuous feeding of seawater under the same conditions, but M4 was first inoculated with H. neapolitanus IC_S22. The initial sulfate concentration in both the M3 and M4 microcosm reactors was 660 mg/l, and the maximum sulfate concentration was 1,360 mg/l (M3) and 1,600 mg/l (M4).

Geochemical Evolution and Deep Environment of the Geothermal Waters in the Bugok Area: Reconsideration on the Origin of Sulfate-type Geothermal Water (부곡 지열수의 심부환경과 지화학적 진화: 유황형 지열수의 생성과정 재해석)

  • 고용권;윤성택;김천수;배대석;박성숙
    • Economic and Environmental Geology
    • /
    • v.34 no.4
    • /
    • pp.329-343
    • /
    • 2001
  • The deep environment and geochemical evolution of the Bugok geothennal waters, located in the Kyeongnam Province, was re-interpreted based on the hydrochemical and isotopic data published by Yun et al. (1998). The geothermal waters of the Bugok area is geochemically divided into three groups; Geothennal water I, II and III groups. Groups I and II are geochemically similar; high temperature (55.2-77.2$^{\circ}$C) and chemically belonging to Na-S04 types. However, pH and Eh values are a little different each other and Group II water is highly enriched in S04 compared to Group I water. Group III water, occurring from peripheral sites of the central part of the geothennal waters, shows temperature range of 29.3 to 47.0$^{\circ}$C and belongs to $Na-HCO_3-S0_4$ types. The deep environment and geochemical evolution of the Bugok geothennal waters, showing the diversity of geochemistry, can be interpreted as follows; I) Descending to great depth of meteoric waters that originated at high elevation and reacting with sediments and/or granites in depth. The $S0_4$ concentration of the waters has been increased by the dissolution of sulfate minerals in sediments. 2) During the continuous descending, the waters has met with the reduction environment, producing the $H_2S$ gas due to sulfate reduction. The waters has been heated up to 130$^{\circ}$C and the extent of water-rock reaction was increased. At this point, pH of waters are increased, S04 concentration decreased and calcite precipitated, therefore, the waters show the $Na-S0_4$ type. 3) Ascending of the geothennal waters along the flow path of fluids and mixing with less-deeply circulated waters. The $S0_4$ concentration is re-increased due to the oxidation of $H_2S$ gas and/or sulfide minerals in sediments. During continuous ascending, these geothennal waters are mixed with shallow groundwater.

  • PDF

Geochemical Modeling on Behaviors of Radionuclides (U, Pu, Pd) in Deep Groundwater Environments of South Korea (한국 심부 지하수 환경에서의 방사성 핵종(우라늄, 플루토늄, 팔라듐)의 지화학적 거동 모델링)

  • Jaehoon Choi;SunJu Park;Hyunsoo Seo;Hyun Tai Ahn;Jeong-Hwan Lee;Junghoon Park;Seong-Taek Yun
    • Economic and Environmental Geology
    • /
    • v.56 no.6
    • /
    • pp.847-870
    • /
    • 2023
  • The safe disposal of high-level radioactive waste requires accurate predictions of the long-term geochemical behavior of radionuclides. To achieve this, the present study was conducted to model geochemical behaviors of uranium (U), plutonium (Pu), and palladium (Pd) under different hydrogeochemical conditions that represent deep groundwater in Korea. Geochemical modeling was performed for five types of South Korean deep groundwater environment: high-TDS saline groundwater (G1), low-pH CO2-rich groundwater (G2), high-pH alkaline groundwater (G3), sulfate-rich groundwater (G4), and dilute (fresh) groundwater (G5). Under the pH and Eh (redox potential) ranges of 3 to 12 and ±0.2 V, respectively, the solubility and speciation of U, Pu, and Pd in deep groundwater were predicted. The result reveals that U(IV) exhibits high solubility within the neutral to alkaline pH range, even in reducing environment with Eh down to -0.2 V. Such high solubility of U is primarily attributed to the formation of Ca-U-CO3 complexes, which is important in both G2 located along fault zones and G3 occurring in granitic bedrocks. On the other hand, the solubility of Pu is found to be highly dependent on pH, with the lowest solubility in neutral to alkaline conditions. The predominant species are Pu(IV) and Pu(III) and their removal is predicted to occur by sorption. Considering the migration by colloids, however, the role of colloid formation and migration are expected to promote the Pu mobility, especially in deep groundwater of G3 and G5 which have low ionic strengths. Palladium (Pd) exhibits the low solubility due to the precipitation as sulfides in reducing conditions. In oxidizing condition, anionic complexes such as Pd(OH)3-, PdCl3(OH)2-, PdCl42-, and Pd(CO3)22- would be removed by sorption onto metal (hydro)oxides. This study will improve the understanding of the fate and transport of radionuclides in deep groundwater conditions of South Korea and therefore contributes to develop strategies for safe high-level radioactive waste disposal.

Characteristics and Roles of the Submerged Separation Membrane in Anaerobic Digestion (혐기성소화에 있어서 침지형분리막의 역학과 특성)

  • Cha, Gi-Cheol;Chung, Hyung-Keun;Noh, Sao-Hong;Seo, Yang-Chan;Kim, Young-Chul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.3
    • /
    • pp.417-427
    • /
    • 2000
  • The substrate metabolism and bacterial population in an anaerobic digestion with the submerged separation membrane were investigated by using a laboratory-scale reactor at the hydraulic retention time(HRT) 1.0 and 0.5 day. The removal efficiencies of carbohydrate at the HRT 1.0 and 0.5 day were 99.8~99.9% and 98.0~99.6%, respectively. After the 58 days, the mixed liquor volatile suspended solids(MLVSS) concentration at the HRT 1.0 and 0.5 day were approximately 6,050 and 7,750 mg/L, respectively. According to the measurement by the most probable number(MPN) method, the numbers of acidogenic bacteria, $H_2$-utilizing and acetate-utilizing methc.nogenic bacteria were found to be $10^9$, $10^7{\sim}10^8$ and $10^6{\sim}10^8MPN/mL$, respectively. The composition of $CH_4$ in the produced gas was 46~50%. It is suggested that sulfate-reducing bacteria $10^7{\sim}10^8MPN/mL$ play an important role in producing $H_2$ and acetate in sulfate-depleted environment.

  • PDF

Distribution of Sulfate-reducing Bacteria in Landfill Leachate and their Role on Insolubilization of Heavy metals (폐기물매립지 침출수에서 황산염환원균의 분포와 중금속 불용화역할)

  • Jung, Kweon;Shin, Jai-Young;Jung, Il-Hyun;Takamizawa, Kazuhiro;Yoo, Young-Sik
    • Journal of Environmental Health Sciences
    • /
    • v.23 no.3
    • /
    • pp.27-39
    • /
    • 1997
  • This study, collaborated Gifu University, Japan, was performed to analyze chemical pollutants and microorganism and to clarify the distribution of sulfate-reducing bacteria and their insolubilization of heavy metal ions in leachates sampled seasonally between 1994 and 1996 from Nanjido waste landfill site, sampled 4 times between 1995 and 1996 from Pusan and Daejeon waste landfill site, and sampled 1 time between 1992 and 1994 from Hokkaido, Nagoya, Osaka and Hukuoka waste landfill site in Japan. The results were as follows: 1. The temperatures of internal leachate and leachate effluent were 40$\circ$C and 30$\circ$C, respectively, and the pH values of both leachates were about 8.0 at Nanjido waste landfill site. The concentration of SO$_4^{-2}$ gradually increased with the degree of stabilization and that of NO$_3$-N was detected in a part of sampling sites at one and half years, and in all sampling sites at 3 years after completion of landfill. 2. The organic substances in leachate of Nanjido waste landfill site decreased with the degree of stabilization and they were very fluctuated with measuring point and time. The concentration of organic substance and heavy metals in internal leachate were higher than in leachate effluent and those of Cd, Hg, and Pb were lower than detection limit except a part of samples in 1996. 3. APCs in internal leachate and leachate effluent were not much different and the minimum of APCs in internal leachate and leachate effluent were $1.0\times 10^4$/ml and $4.0\times 10^1$/ml, respectively. 4. The maximums of SRBs in Nanjido, Pusan, and Daejeon waste landfill site were 9180 MPN/ml, 24000 MPN/ml, and 348 MPN/ml, respectively and the maximum of SRBs in Japan waste landfill site was 9300 MPN/ml. 5. During 2-week-SRB culture, the values of MPN were high at 50$\circ$C for initial culture period and at 30$\circ$C for last culture period. MPN started to appear at first day and rapidly increased between 7th day and 9th day. 6. Cadmium and copper were insolubilized by SRB within 6 hr and iron and zinc were done within 48 hr. The rates of insolubilization of Cd, Cu, Fe, Zn, T-Cr were 100%, 99.5%, 95.0%, 99.8%, 16.1% after 48 hr treatment with SRB, respectively.

  • PDF

Effect of Lime and Temperature on the Changes of Available Soil Nutrients in Acid Sulfate Soil under Submergence (특이산성토양(特異酸性土壤)에서 담수시(湛水時) 석회처리(石灰處理) 및 온도조절(溫度調節)이 토양(土壤)의 유효성분(有效成分) 변화(變化)에 미치는 영향(影響))

  • Kang, Ui-Gwm;Ha, Ho-Sung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.18 no.3
    • /
    • pp.282-288
    • /
    • 1985
  • This experiment was conducted to investigate the changing patterns of the available elements by the control of lime addition amount and temperature in Acid Sulfate Soils under the submerged condition. The results obtained were summarized as follows: 1. pH and contents of available phosphate, soluble silicate, $NH_4-N$, and exchangeable iron in soils were decreased but exchangeable aluminium and manganese, and water soluble sulfur in soils increased after submergence. 2. Lime treatment increased pH, available phosphate, soluble silicate, $NH_4-N$, and water soluble sulfur, but that decreased exchangeable aluminium, iron, and manganese in soils. 3. Treatment with 12me/100gr of Ca as $CaCO_3$, showed the marked effect in increasing the exchangeable aluminium and iron, and increasing pH value to about 6.5 as well as available phosphate and $NH_4-N$. 4. Increases in available phosphate, $NH_4-N$, and exchangeable iron with aging of the soil flooded and lime treated were higher at $35^{\circ}C$ than those at $25^{\circ}C$. 5. Throughout submerged period a significant positive correlation was observed between pH and soluble silicate while the pH has negative correlation with exchangeable elements such as aluminium, iron, and manganese etc.

  • PDF