• 제목/요약/키워드: 황변도

Search Result 103, Processing Time 0.024 seconds

Experimental Study of Restoration material on Ceramics - Long-Necked far and Gourd-Shaped Pitcher - (토기.자기 복원재료에 대한 연구 - 목항아리와 조롱박모양주전자 -)

  • Hwang, Hyun-Sung;Lee, Hae-Soon
    • Journal of Conservation Science
    • /
    • v.19
    • /
    • pp.31-42
    • /
    • 2006
  • There are many materials used in restoring missing parts of pottery and ceramics and they are used according to the each quality of materials. In our research we tried to find the new repair materials to solve many problems exposed in the existing repair materials. As a result, we made new repair materials that we properly put oven bake clays into repair epoxy putty which is being used as oven bake clays for a long time. Fortunately, through testing yellowing, vickers hardness, coloring and heating temperature, We could get an idea that new repair materials would be the best materials in the efficiency of restoration, yellowing, and coloring.

  • PDF

Discoloration and the Effect of Antioxidants on Thermo-Oxidative Degradation of Polyamide 6 (폴리아미드 6의 열 산화반응에 의한 황변 현상과 산화방지제의 효과)

  • ;;;T. Mori
    • Polymer(Korea)
    • /
    • v.26 no.4
    • /
    • pp.452-461
    • /
    • 2002
  • In this study, the effect of various concentrations of antioxidants on thermo-oxidative degradation of polyamide 6 was investigated. Unstabilized and stabilized polyamides 6 were subjected to long-term oven aging in ambient atmosphere at 70~$160^{\circ}C$. All of specimens were discolored within 100 hr at temperature range of 70~$160^{\circ}C$. Optimum antioxidant concentration was determined from the data of mechanical properties, yellowness index and relative viscosity. The synergistic effect of each primary and secondary antioxidant concentrations was not observed. Yellowing phenomenon was explained by using NMR, IR and EA. Different carbonyl groups were detected by $^{13}C$/NMR. During thermooxidative degradation, oxygen consumptions were determined by EA. The lifetime after long-term aging was predicted using Arrhenius equation.

Studies on Resistance to Septoria Brown Spot(Septoria glycines Hemmi) in Native Soybean Collection (재래종 대두의 갈문병 저항성에 관한 연구)

  • Kwon, S.H.;Oh, J.H.;Kim, J.R.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.25 no.1
    • /
    • pp.47-53
    • /
    • 1980
  • Of 1, 428 entries examined to locate gene sources resistant to Septoria brown spot from the Korean native soybean collection, most lines were evaluated as highly susceptible, showing numerous leaf spots with surrounding yellowing tissue, while 136 lines of the entries showed the leaf spots without the yellowing. However, leaf defoliation was so much higher in inoculated soybean plants than those of uninoculated, regardless of leaf yellowing that resistance to Septoria brown spot could not be characterized by the lesion type. Various yield composing characters were negatively correlated to the leaf defoliation, suggesting that early defoliation incited by Septoria brown spot might result in significant yield reduction in soybean.

  • PDF

Study on the Mixed Materials and Epoxy Materials for Restoration of Ceramics - chromaticity·porosity·sedimentary rate - (도자기 보존을 위한 복원제의 특성 연구 - 색도(色度)·기공률(氣孔率)·침전률(沈澱率)·황변도(黃變度)를 중심으로 -)

  • Lee, Haesoon
    • Conservation Science in Museum
    • /
    • v.6
    • /
    • pp.55-66
    • /
    • 2005
  • Three types of epoxy resins (Epo-Tek 301, Araldite 103, and Araldite 106) and three types of pigments (bunche, pastel, and conté), which are materials for porcelain restoration, were selected as examination materials. The tone change, porosity, and sedimental resulting from the mixtures of varying ratios of these three materials were observed. Samples were also made from the mixture of Epo-teck 301, four kinds of white pigments, and six types of fillers and subjected to ultraviolet ray penetration for 200 hours to observe the oxidation of the epoxy resins. The result showed that the chemical composition of pastel drastically changed when mixed with Epo-tek 301. Although bunche and conté displayed clear colors, those of conté were less clear when it was mixed with other substances. Adding a small amount of Epo-tek 301 tended to be driven into the corner, whereas mixing a large amount caused saturation and boiling. On the other hand, AW 106 did not display clear colors owing to its high viscosity; when mixed in large amounts, however, the clarity of colors improved. For AY 103, a similar standard of color clarity was maintained regardless of the mixture ratio. The following was ranked according to the level of porosity: [Pastel>bunche≒conté]. In terms of sedimentary, however, [bunche>conté>Pastel], [Epo-tek 301> AY 103> AW 106]. The result of measuring the degree of yellowing revealed that titanium, pastel, silicon dioxide, and kaolin tended to turn yellow, whereas bunche, conté, diatomaceous earth, and calcium hydroxide tended to resist yellowing.

Photodegradation of Cellulosics(Part II) - Chemical Properties of Irradiated Cotton - (Cellulose의 광분해에 관한 연구(II) - 광조사된 면섬유의 화학적 성질을 중심으로 -)

  • 전경숙
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.18 no.1
    • /
    • pp.15-22
    • /
    • 1994
  • The formation of carbonyl group was dominant to other functional groups. Concentrations of both carboxyl and peroxide groups were found to rapidly reach low steady state values that increased slightly with increa-sing temperature and relatice humidity. Since the deg-radation of cellulose samples was in the initial stage and the conversion of glycosidic bonds and hydroxyl groups were very small, it was found that changes in the physical and chemical properties could be fitted to a first-order reaction model.

  • PDF

A Study of Usability of Micro Shell as a Filler for Restoration of Iron Objects (Micro Shell을 이용한 철기 문화재 복원용 충전제의 사용성 연구)

  • Lee, Hyunji;Wi, Koangchul
    • Conservation Science in Museum
    • /
    • v.27
    • /
    • pp.91-102
    • /
    • 2022
  • Silica-based inorganic fillers for restoration of iron objects have been used for the reduction of thermal expansivity and the improvement of melt flow index. However, the higher the amount of filler is applied, the more degradation of mechanical properties and the yellowing occur, which could cause retreatment of the objects with adding stress to them. Thus, research on not only the quantification of a mixture of resin and filler but also the yellowing should be emphasized. Experiments on mechanical properties were carried out with a silica-based light filler, Micro Shell as a comparison group. The results of the experiment showed Micro Shell reduced the number of occurrences of the yellowing by 34% compared to existing fillers. The value of adhesion and specific gravity was also improved depending on the filler amount. The results of this research indicate the possibility of using Micro Shell as a new filler.

A Study on the Development and Physical Properties of Low Yellowing Epoxy for Ceramic Preservation (도자기 복원용 저황변 Epoxy 수지의 개발 및 물성에 대한 연구)

  • Kim, Woo Hyun;Cheong, Da Som;Bae, Jin Soo;Jee, Joo Yeon;Wi, Koang Chul
    • Journal of Conservation Science
    • /
    • v.30 no.2
    • /
    • pp.181-187
    • /
    • 2014
  • AThe studies on ceramic preservation have been conducted widely in various institutions such as national/ public museums and research labs as well as the excavation institutions and university museums. Although there are some differences in preservation methodologies and materials used across the institutions, the variation is minimal. Specifically, epoxy resin is mostly used for ceramic restoration for its high cohesiveness, low contraction and high strength although there are some variations in for Ceramic Preservation. The synthetic resin type used according to the type of damage in the ceramic. However, the yellowing or the change of color across the time after the restoration is the weakness of epoxy resin. In this study, we aim to develop a material which minimizes this yellowing of epoxy resin while enhancing its cohesiveness and strength as well as other physical properties. We made the new material to have similar properties with those used widely for the ceramic restoration, such as EPO-TEK301$^{(R)}$, L30$^{(R)}$, XTR-311$^{(R)}$ through comparative experiments. The cohesiveness of the newly developed resin was improved to 2.51(MPa), which is similar level of XTR-311$^{(R)}$ of the 2.30(MPa) but about 2x higher than the other resins EPO-TEK301$^{(R)}$, L30$^{(R)}$ (1.21 and 1.81 (MPa), respectively). Especially, the experiment on yellowing shows that the existing resins show the range of color change at 10~25(${\Delta}E^*ab$), but the new low yellowing epoxy resin has the color change value at 8.3 (${\Delta}E^*ab$), the value lowering the yellowing effect to 1 to 3 times of the existing epoxy resin, thereby solving the issue of generating sense of differences due to change of color or yellowing.

Estimation of Application of Artificially Deteriorated Silk by Ultraviolets for Conservation of Paintings on the Silk (견본 회화보존처리에 자외선 인공열화견의 적용성 평가)

  • Oh, Joon-Suk;Chun, Ji-Youn;Lim, In-Kyung
    • Journal of Conservation Science
    • /
    • v.27 no.2
    • /
    • pp.191-199
    • /
    • 2011
  • A study was done to compare the properties of artificially deteriorated silk with ultraviolets for reinforcing of loss area of paintings on silk. Deteriorated surface of raw silk irradiated by long-wavelength ultraviolet(UV-A) than short-wavelength ultraviolet(UV-C) was similar to naturally aged raw silk. UV-A irradiation raw silk was slowly decreased in tensile tenacity and elongation and lowered in yellowness index than that of UV-C. Water content of UV-A irradiation raw silk than that of UV-C was higher. UV-A irradiation raw silk had no problem in dyeing and inpainting for conservation because of low yellowness index. UV-C irradiation raw silk was brittle, but UV-A irradiation raw silk was seemed to tough and similar to naturally aged raw silk. Korean painting conservator estimated that UV-A irradiation raw silk was more proper for reinforcing of loss area of paintings on silk than that of UV-C.