• Title/Summary/Keyword: 활주균열

Search Result 7, Processing Time 0.023 seconds

Application of Mechanical Crack Model to Numerical Study of Rock Mass Behavior (암석거동의 수치해석적 연구를 위한 균열모형의 적용)

  • Park, Do-hyun;Jeon, Seok-won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.2 no.2
    • /
    • pp.72-85
    • /
    • 2000
  • Rock is a very complex and heterogeneous material, containing structural flaws due to geologic generation process. Because of those structural flaws, deformation and failure of rock when subjected to differential compressive stresses is non-linear. To simulate the non-linear behavior of rock, mechanical crack models, that is, sliding and shear crack models have been used in several studies. In those studies, non-linear stress-strain curves and various behaviors of rock including the changes of effective elastic moduli ($E_1$, $E_2$, ${\nu}_1$, ${\nu}_2$, $G_2$) due to crack growth were simulated (Kemeny, 1993; Jeon, 1996, 1998). Most of the studies have mainly focused on the verification of the mechanical crack model with relatively less attempt to apply it to practical purposes such as numerical analysis for underground and/or slope design. In this study, the validity of mechanical crack model was checked out by simulating the non-linear behavior of rock and consequently it was applied to a practical numerical analysis, finite element analysis commonly used.

  • PDF

A Case Study on the Application of Echelon Paving Method Using a 12m-Wide Screed Finisher on Flexible Airfield Pavements (광폭 Echelon 공법의 연성 활주로 포장 적용에 관한 사례 연구)

  • Jeon, Kook-Il;Choi, Heung-Sup;Bin, Cheol-Ho
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.353-356
    • /
    • 2007
  • Asphalt pavements of the airport in service were monitored to construct new runway and taxiway and longitudinal cracks were found on the pavements. The sources of the longitudinal cracks were the low density which was caused by the longitudinal cold joint with asphalt Pavement constructions and the excessive loads of aircraft. Therefore, the echelon paving method using a 12m-wide screed finisher was used to eliminate longitudinal cracks. When the echelon paving is used, construction of the longitudinal joint is changed so that the compaction of the unconfined edge of the first lane is delayed until the second lane is placed. In conclusion, the use of this construction method results in the density of the longitudinal joint being equal to that of the adjacent mat.

  • PDF

Changes of Effective Elastic Moduli due to Crack Growth in Rock (암석내의 균열전파에 따른 유효탄성계수의 변화)

  • 신종진;전석원
    • Tunnel and Underground Space
    • /
    • v.10 no.3
    • /
    • pp.301-308
    • /
    • 2000
  • Non-linear behavior of rock under compression can be predicted by a crack model. Crack growth in rock renders rock anisotropic. The degree of anisotropy is explained in terms of elastic moduli as a function of load level. In this study, we calculate the changes of elastic moduli due to crack growth numerically by using a crack model and compare these values with experimental results obtained from the measurement of ultrasonic wave velocities. Image processing technique is used to obtain the initial crack information needed for the numerical calculation of elastic moduli.

  • PDF

Changes of Effective Elastic Moduli due to Crack Growth in Rock (암석내의 균열전파에 따른 유효탄성계수의 변화)

  • 신종진;전석원
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2000.09a
    • /
    • pp.47-55
    • /
    • 2000
  • Non-linear behavior of rock under compression can be predicted by a crack model. Crack growth in rock renders rock anisotropic. The degree of anisotropy is explained in terms of elastic moduli as a function of load level. In this study, we calculate the changes of elastic moduli due to crack growth numerically by using a crack model and compare these values with experimental results obtained from the measurement of ultrasonic wave velocities. Image processing technique is used to obtain the initial crack information needed for the numerical calculation of elastic moduli.

  • PDF

Numerical analysis of rock behavior with crack model implementation (균열모형을 이용한 암석거동의 수치해석)

  • 전석원
    • Tunnel and Underground Space
    • /
    • v.9 no.1
    • /
    • pp.56-63
    • /
    • 1999
  • Rock behaves in a complex way due to the discontinuities. To describe the complicated failure and deformation behavior of rock, many researches were focused on the development of crack models. This study discusses the validity of the sliding and shear crack model to systematically fractured rock, i.e. coal. The model was also implemented into a numerical analysis. For that, a finite element program was modified in several ways. To describe the transverse isotropy in two-dimensional analysis, the stress-strain relationship was modified for the direction of the axis of symmetry. Also, the changes of the effective elastic moduli according to the crack growth were calculated. A simple example of two-dimensional laboratory uniaxial compression test was analyzed. The results coincided with the observations obtained from the laboratory tests.

  • PDF

Seismic Techniques for the Integrated Assessment of Structural Integrity of Concrete Runway (콘크리트 활주로 건전도상태의 종합평가를 위한 비파괴 탄성파기법)

  • Joh Sung-Ho;Kang Tae-Ho;Cho Mi-Ra;Suh Young-Chan;Kwon Soo-Ahn
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.4
    • /
    • pp.51-63
    • /
    • 2005
  • Concrete pavement may suffer from material deterioration or structural problems, which lead to surface cracks and deflection of a concrete pavement. Degraded concrete pavement, when it is still under operation, should be recovered by an urgent maintenance to avoid the discontinued service leading to the significant traffic problems and economic loss. Seismic techniques are good tools to assess the structural integrity of concrete runway. It is because seismic techniques can evaluate engineering properties nondestructively and quickly and the evaluation can be extended to subgrade. In this study, a series of numerical simulations of stress-wave propagation were performed to verify feasibility of seismic techniques as an assessment tool. Based on the results of the numerical simulation, a framework of using seismic techniques was presented fur the nondestructive integrated assessment fur structural integrity of concrete runway. And the presented framework was applied to $\bigcirc\bigcirc$ concrete runway with surface cracks, which required urgent maintenance, to identify the causes of the surface cracks. The results obtained from the structural integrity assessment were compared with the measurements of the cores collected from the same runway for verification of the presented framework.

The Study on Improvement about Structural Integrity of Main Landing Gear for Rotorcraft (회전익 항공기 구조건전성 향상을 위한 주륜착륙장치 결함 개선연구)

  • Jang, Min-Uk;Lee, Yoon-Woo;Seo, Young-Jin;Ji, Sang-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.10
    • /
    • pp.459-467
    • /
    • 2019
  • The landing gear is a component that requires a high degree of safety to protect the lives of rotary-wing aircraft and boarding personnel, absorbing the impact on transfer/landing and supporting the fuselage during taxiing and mooring on the ground. In particular, the wheel landing gear supporting the aircraft fuselage absorbs most of the shock from the ground through the shock absorber and tires. This ensures the safety of the pilot on board the aircraft and satisfies the operational capability of the soldiers between missions. During the operation of a rotary-wing aircraft, a number of piston pins, which are a component of the right main wheel landing gear, were found to be broken. Therefore, this study examined the root cause of the piston pin crack phenomenon found in the main wheel landing gear. For this purpose, various causes were identified from fracture surface analysis of a flight test. In particular, the possibility of cracking was analyzed based on the influence on the fastening torque with the drag beam component applied to the piston pin at the time of development. This ensures the fatigue life and structural integrity.