• Title/Summary/Keyword: 활용도

Search Result 107,894, Processing Time 0.128 seconds

A Case Study on Application of the Menu Engineering Technique in Government Offices Contract Foodservice (관공서급식소의 메뉴엔지니어링기법을 적용한 메뉴분석 사례연구)

  • Rho, Sung-Yoon
    • Journal of Nutrition and Health
    • /
    • v.42 no.1
    • /
    • pp.78-96
    • /
    • 2009
  • The purpose of this study was to analyze and evaluate the menu served in government offices foodservice by using Kasavana & Smith's Menu-Engineering. Sales and food costs were collected from the daily sales reports for a year from Jan 2 to Dec 31 in 2007. Calculation for menu analysis and customer's data were done by computer using the MS 2003 Excel spreadsheet program and SPSS 12.0 package program. Menu mix% (MM%) and unit contribution margin were used as variables by Kasavana & Smith. Four possible classifications by Menu-Engineering technique were turned out as 'STAR', 'PLOWHORSE', 'PUZZLE', 'DOG'. The main menus served during a year were 128 dishes and about 141 peoples visited this restaurant daily. The mean age of the men was $44.1\;{\pm}\;6.3$, women were $32.7\;{\pm}\;6.4$ and showed that was statistically higher than that of women (p < .0001). The rates of STAR menus were 'Western style (75.0%)', 'guk/tang-ryu (48.1%)', 'jjigae/ jeongol-ryu (23.1%)', 'bap-ryu (17.2%)' in sequence. There were no STAR menus in gui/jorim/jjim-ryu. PLOWHORSE menus were 'gui-ryu (75.0%)', 'guk/tang-ryu (29.6%)', 'bap-ryu (27.6%)' in sequence. There were no PUZZLE or DOG menus in 'jjigae/jeongol-ryu'. PUZZLE menus were 'jorim/jjim-ryu and Myeonryu (each 33.3%)', 'bap-ryu (31.0%)' in sequence. PUZZLE menus were a lots of 'Chinese food (75.0%)' and 'myeonryu (55.6%)'. This study provides the basic data based on regularly menu analysis method applied the scientific menu analysis techniques in government offices food services, I'd like to suggest that the menu management must be done based on the necessity and result of menu analysis according to the seasonal and middle, long-term plans.

A Basic Study on the Euryale ferox Salisbury for Introduction in Garden Pond - Focusing on the Flora and Vegetation - (정원내 가시연꽃(Euryale ferox Salisbury) 도입을 위한 기초연구 - 식물상과 식생을 중심으로 -)

  • Lee, Suk-Woo;Rho, Jae-Hyun;Oh, Hyun-Kyung
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.34 no.1
    • /
    • pp.83-96
    • /
    • 2016
  • Through the research and analysis on the vegetation environment, flora of habitats through documentary and field studies over 14 habitats of Euryale ferox Salisbury within Jeollabukdo, with the objective of acquiring the basic data for forming an environment based on plantation of reservoirs that are composed with Euryale ferox, the following results were obtained. 1. The entire flora of the 14 habitats appeared to be 79 families, 211 genus, 298 species, two subspecies, 30 varieties and six forma, thus, a total of 336 taxa was confirmed. Among these, emergent water plants appeared to compose 17 taxa, floating-leaved plants to compose seven taxa including Euryale ferox floating plants to compose five taxa and submerged water plants to compose two taxa. As a result of analyzing the similarity only over the water plants. The lowest similarity rate appeared between Gamdong Reservoir and Aedang Reservoir, as the similarity rate between the two regions appeared to be 0% as a result of the analysis. Floating-leaved plants, lotuses and caltrops, appeared to be equally inhabiting in Hanseongji at Jeongeup and Seoknam Reservoir at Gochang, which showed the highest similarity rate, in addition to Euryale ferox. 2. When examining the appearance frequency of aquatic plants per growth type, Actinostemma lobatum and Phragmites communis, in addition to Euryale ferox each appeared 11 times, showing a high frequency of 78.6% and Trapa japonica, which is a floating-leaved water plant, appeared ten times(71.4%) and Zizania latifolia appeared eight times(57.1%). In addition, the appearance rate appeared to be high in the order of Persicaria thunbergii, Leersia sayanuka, Ceratophyllum demersum, Echinochloa crusgalli var. oryzicola, Scirpus maritimus, and Nelumbo nucifera. 3. The rare plants discovered in the Euryale ferox habitats pursuant to the IUCN evaluation standards was confirmed to be composed of five taxa, with three taxa including the least concerned species(LC), Melothria japonica at Yanggok Reservoir, Hydrocharis dubia at Myeongdeokji and Ottelia alismoides at Daewi Reservoir, in addition to vulnerable species(VU), Utricularia vulgaris at Sangpyeong Reservoir, along with Euryale ferox. 4. Most of the group or community types of the natural habitats of Euryale ferox appeared to be the Euryale ferix community' and the Daewi Reservoir of Gunsan was defined as caltrop + Euryale ferox + Nymphoides indica community. The green coverage ratio of Euryale ferox per natural habitats showed a considerably huge deviation from 0.03 to 36.50 and as the average green coverage ratio was appropriated as 9.8, it can be considered that maintaining the green coverage ratio of Euryale ferox in a 10% level would be advisable when forming a reservoir with Euryale ferox as the key composition species. 5. The vegetation community nearby the natural habitats of Euryale ferox per research subject area appeared to be composed of three Leersia japonica communities, two communities each for Zizania latifolia community and Trapa japonica community and one community each for Nelumbo nucifera community, Nymphoides peltata + Typha orientalis community, Trapa japonica + Nelumbo nucifera community, Hydrocharis dubia community, Leersia japnica + Paspalum distichum var. indutum community and Euryale ferox + Trapa japonica community, showing a slight difference depending on the location conditions of each reservoir. Thus, this result may be suggested as a guideline to apply when allocating the vegetation ratio and the types of floating-leaved plants upon planting plants in reservoirs with Euryale ferox as the main companion species.

Electronic Roll Book using Electronic Bracelet.Child Safe-Guarding Device System (전자 팔찌를 이용한 전자 출석부.어린이 보호 장치 시스템)

  • Moon, Seung-Jin;Kim, Tae-Nam;Kim, Pan-Su
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.4
    • /
    • pp.143-155
    • /
    • 2011
  • Lately electronic tagging policy for the sexual offenders was introduced in order to reduce and prevent sexual offences. However, most sexual offences against children happening these days are committed by the tagged offenders whose identities have been released. So, for the crime prevention, we need measures with which we could minimize the suffers more promptly and actively. This paper suggests a new system to relieve the sexual abuse related anxiety of the children and solve the problems that electronic bracelet has. Existing bracelets are only worn by serious criminals, and it's only for risk management and positioning, there is no way to protect the children who are the potential victims of sexual abuse and there actually happened some cases. So we suggest also letting the students(children) wear the LBS(Location Based Service) and USN(Ubiquitous Sensor Network) technology based electronic bracelets to monitor and figure out dangerous situations intelligently, so that we could prevent sexual offences against children beforehand, and while a crime is happening, we could judge the situation of the crime intelligently and take swift action to minimize the suffer. And by checking students' attendance and position, guardians could know where their children are in real time and could protect the children from not only sexual offences but also violent crimes against children like kidnapping. The overall system is like follows : RFID Tag for children monitors the approach of offenders. While an offender's RFID tag is approaching, it will transmit the situation and position as the first warning message to the control center and the guardians. When the offender is going far away, it turns to monitoring mode, and if the tag of the child or the offender is taken off or the child and offender stay at one position for 3~5 minutes or longer, then it will consider this as a dangerous situation, then transmit the emergency situations and position as the second warning message to the control center and the guardians, and ask for the dispatch of police to prevent the crime at the initial stage. The RFID module of criminals' electronic bracelets is RFID TAG, and the RFID module for the children is RFID receiver(reader), so wherever the offenders are, if an offender is at a place within 20m from a child, RFID module for children will transmit the situation every certain periods to the control center by the automatic response of the receiver. As for the positioning module, outdoors GPS or mobile communications module(CELL module)is used and UWB, WI-FI based module is used indoors. The sensor is set under the purpose of making it possible to measure the position coordinates even indoors, so that one could send his real time situation and position to the server of central control center. By using the RFID electronic roll book system of educational institutions and safety system installed at home, children's position and situation can be checked. When the child leaves for school, attendance can be checked through the electronic roll book, and when school is over the information is sent to the guardians. And using RFID access control turnstiles installed at the apartment or entrance of the house, the arrival of the children could be checked and the information is transmitted to the guardians. If the student is absent or didn't arrive at home, the information of the child is sent to the central control center from the electronic roll book or access control turnstiles, and look for the position of the child's electronic bracelet using GPS or mobile communications module, then send the information to the guardians and teacher so that they could report to the police immediately if necessary. Central management and control system is built under the purpose of monitoring dangerous situations and guardians' checking. It saves the warning and pattern data to figure out the areas with dangerous situation, and could help introduce crime prevention systems like CCTV with the highest priority. And by DB establishment personal data could be saved, the frequency of first and second warnings made, the terminal ID of the specific child and offender, warning made position, situation (like approaching, taken off of the electronic bracelet, same position for a certain time) and so on could be recorded, and the data is going to be used for preventing crimes. Even though we've already introduced electronic tagging to prevent recurrence of child sexual offences, but the crimes continuously occur. So I suggest this system to prevent crimes beforehand concerning the children's safety. If we make electronic bracelets easy to use and carry, and set the price reasonably so that many children can use, then lots of criminals could be prevented and we can protect the children easily. By preventing criminals before happening, it is going to be a helpful system for our safe life.

The way to make training data for deep learning model to recognize keywords in product catalog image at E-commerce (온라인 쇼핑몰에서 상품 설명 이미지 내의 키워드 인식을 위한 딥러닝 훈련 데이터 자동 생성 방안)

  • Kim, Kitae;Oh, Wonseok;Lim, Geunwon;Cha, Eunwoo;Shin, Minyoung;Kim, Jongwoo
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.1-23
    • /
    • 2018
  • From the 21st century, various high-quality services have come up with the growth of the internet or 'Information and Communication Technologies'. Especially, the scale of E-commerce industry in which Amazon and E-bay are standing out is exploding in a large way. As E-commerce grows, Customers could get what they want to buy easily while comparing various products because more products have been registered at online shopping malls. However, a problem has arisen with the growth of E-commerce. As too many products have been registered, it has become difficult for customers to search what they really need in the flood of products. When customers search for desired products with a generalized keyword, too many products have come out as a result. On the contrary, few products have been searched if customers type in details of products because concrete product-attributes have been registered rarely. In this situation, recognizing texts in images automatically with a machine can be a solution. Because bulk of product details are written in catalogs as image format, most of product information are not searched with text inputs in the current text-based searching system. It means if information in images can be converted to text format, customers can search products with product-details, which make them shop more conveniently. There are various existing OCR(Optical Character Recognition) programs which can recognize texts in images. But existing OCR programs are hard to be applied to catalog because they have problems in recognizing texts in certain circumstances, like texts are not big enough or fonts are not consistent. Therefore, this research suggests the way to recognize keywords in catalog with the Deep Learning algorithm which is state of the art in image-recognition area from 2010s. Single Shot Multibox Detector(SSD), which is a credited model for object-detection performance, can be used with structures re-designed to take into account the difference of text from object. But there is an issue that SSD model needs a lot of labeled-train data to be trained, because of the characteristic of deep learning algorithms, that it should be trained by supervised-learning. To collect data, we can try labelling location and classification information to texts in catalog manually. But if data are collected manually, many problems would come up. Some keywords would be missed because human can make mistakes while labelling train data. And it becomes too time-consuming to collect train data considering the scale of data needed or costly if a lot of workers are hired to shorten the time. Furthermore, if some specific keywords are needed to be trained, searching images that have the words would be difficult, as well. To solve the data issue, this research developed a program which create train data automatically. This program can make images which have various keywords and pictures like catalog and save location-information of keywords at the same time. With this program, not only data can be collected efficiently, but also the performance of SSD model becomes better. The SSD model recorded 81.99% of recognition rate with 20,000 data created by the program. Moreover, this research had an efficiency test of SSD model according to data differences to analyze what feature of data exert influence upon the performance of recognizing texts in images. As a result, it is figured out that the number of labeled keywords, the addition of overlapped keyword label, the existence of keywords that is not labeled, the spaces among keywords and the differences of background images are related to the performance of SSD model. This test can lead performance improvement of SSD model or other text-recognizing machine based on deep learning algorithm with high-quality data. SSD model which is re-designed to recognize texts in images and the program developed for creating train data are expected to contribute to improvement of searching system in E-commerce. Suppliers can put less time to register keywords for products and customers can search products with product-details which is written on the catalog.

Smart Store in Smart City: The Development of Smart Trade Area Analysis System Based on Consumer Sentiments (Smart Store in Smart City: 소비자 감성기반 상권분석 시스템 개발)

  • Yoo, In-Jin;Seo, Bong-Goon;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.25-52
    • /
    • 2018
  • This study performs social network analysis based on consumer sentiment related to a location in Seoul using data reflecting consumers' web search activities and emotional evaluations associated with commerce. The study focuses on large commercial districts in Seoul. In addition, to consider their various aspects, social network indexes were combined with the trading area's public data to verify factors affecting the area's sales. According to R square's change, We can see that the model has a little high R square value even though it includes only the district's public data represented by static data. However, the present study confirmed that the R square of the model combined with the network index derived from the social network analysis was even improved much more. A regression analysis of the trading area's public data showed that the five factors of 'number of market district,' 'residential area per person,' 'satisfaction of residential environment,' 'rate of change of trade,' and 'survival rate over 3 years' among twenty two variables. The study confirmed a significant influence on the sales of the trading area. According to the results, 'residential area per person' has the highest standardized beta value. Therefore, 'residential area per person' has the strongest influence on commercial sales. In addition, 'residential area per person,' 'number of market district,' and 'survival rate over 3 years' were found to have positive effects on the sales of all trading area. Thus, as the number of market districts in the trading area increases, residential area per person increases, and as the survival rate over 3 years of each store in the trading area increases, sales increase. On the other hand, 'satisfaction of residential environment' and 'rate of change of trade' were found to have a negative effect on sales. In the case of 'satisfaction of residential environment,' sales increase when the satisfaction level is low. Therefore, as consumer dissatisfaction with the residential environment increases, sales increase. The 'rate of change of trade' shows that sales increase with the decreasing acceleration of transaction frequency. According to the social network analysis, of the 25 regional trading areas in Seoul, Yangcheon-gu has the highest degree of connection. In other words, it has common sentiments with many other trading areas. On the other hand, Nowon-gu and Jungrang-gu have the lowest degree of connection. In other words, they have relatively distinct sentiments from other trading areas. The social network indexes used in the combination model are 'density of ego network,' 'degree centrality,' 'closeness centrality,' 'betweenness centrality,' and 'eigenvector centrality.' The combined model analysis confirmed that the degree centrality and eigenvector centrality of the social network index have a significant influence on sales and the highest influence in the model. 'Degree centrality' has a negative effect on the sales of the districts. This implies that sales decrease when holding various sentiments of other trading area, which conflicts with general social myths. However, this result can be interpreted to mean that if a trading area has low 'degree centrality,' it delivers unique and special sentiments to consumers. The findings of this study can also be interpreted to mean that sales can be increased if the trading area increases consumer recognition by forming a unique sentiment and city atmosphere that distinguish it from other trading areas. On the other hand, 'eigenvector centrality' has the greatest effect on sales in the combined model. In addition, the results confirmed a positive effect on sales. This finding shows that sales increase when a trading area is connected to others with stronger centrality than when it has common sentiments with others. This study can be used as an empirical basis for establishing and implementing a city and trading area strategy plan considering consumers' desired sentiments. In addition, we expect to provide entrepreneurs and potential entrepreneurs entering the trading area with sentiments possessed by those in the trading area and directions into the trading area considering the district-sentiment structure.

Business Application of Convolutional Neural Networks for Apparel Classification Using Runway Image (합성곱 신경망의 비지니스 응용: 런웨이 이미지를 사용한 의류 분류를 중심으로)

  • Seo, Yian;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.3
    • /
    • pp.1-19
    • /
    • 2018
  • Large amount of data is now available for research and business sectors to extract knowledge from it. This data can be in the form of unstructured data such as audio, text, and image data and can be analyzed by deep learning methodology. Deep learning is now widely used for various estimation, classification, and prediction problems. Especially, fashion business adopts deep learning techniques for apparel recognition, apparel search and retrieval engine, and automatic product recommendation. The core model of these applications is the image classification using Convolutional Neural Networks (CNN). CNN is made up of neurons which learn parameters such as weights while inputs come through and reach outputs. CNN has layer structure which is best suited for image classification as it is comprised of convolutional layer for generating feature maps, pooling layer for reducing the dimensionality of feature maps, and fully-connected layer for classifying the extracted features. However, most of the classification models have been trained using online product image, which is taken under controlled situation such as apparel image itself or professional model wearing apparel. This image may not be an effective way to train the classification model considering the situation when one might want to classify street fashion image or walking image, which is taken in uncontrolled situation and involves people's movement and unexpected pose. Therefore, we propose to train the model with runway apparel image dataset which captures mobility. This will allow the classification model to be trained with far more variable data and enhance the adaptation with diverse query image. To achieve both convergence and generalization of the model, we apply Transfer Learning on our training network. As Transfer Learning in CNN is composed of pre-training and fine-tuning stages, we divide the training step into two. First, we pre-train our architecture with large-scale dataset, ImageNet dataset, which consists of 1.2 million images with 1000 categories including animals, plants, activities, materials, instrumentations, scenes, and foods. We use GoogLeNet for our main architecture as it has achieved great accuracy with efficiency in ImageNet Large Scale Visual Recognition Challenge (ILSVRC). Second, we fine-tune the network with our own runway image dataset. For the runway image dataset, we could not find any previously and publicly made dataset, so we collect the dataset from Google Image Search attaining 2426 images of 32 major fashion brands including Anna Molinari, Balenciaga, Balmain, Brioni, Burberry, Celine, Chanel, Chloe, Christian Dior, Cividini, Dolce and Gabbana, Emilio Pucci, Ermenegildo, Fendi, Giuliana Teso, Gucci, Issey Miyake, Kenzo, Leonard, Louis Vuitton, Marc Jacobs, Marni, Max Mara, Missoni, Moschino, Ralph Lauren, Roberto Cavalli, Sonia Rykiel, Stella McCartney, Valentino, Versace, and Yve Saint Laurent. We perform 10-folded experiments to consider the random generation of training data, and our proposed model has achieved accuracy of 67.2% on final test. Our research suggests several advantages over previous related studies as to our best knowledge, there haven't been any previous studies which trained the network for apparel image classification based on runway image dataset. We suggest the idea of training model with image capturing all the possible postures, which is denoted as mobility, by using our own runway apparel image dataset. Moreover, by applying Transfer Learning and using checkpoint and parameters provided by Tensorflow Slim, we could save time spent on training the classification model as taking 6 minutes per experiment to train the classifier. This model can be used in many business applications where the query image can be runway image, product image, or street fashion image. To be specific, runway query image can be used for mobile application service during fashion week to facilitate brand search, street style query image can be classified during fashion editorial task to classify and label the brand or style, and website query image can be processed by e-commerce multi-complex service providing item information or recommending similar item.

Performance Improvement on Short Volatility Strategy with Asymmetric Spillover Effect and SVM (비대칭적 전이효과와 SVM을 이용한 변동성 매도전략의 수익성 개선)

  • Kim, Sun Woong
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.1
    • /
    • pp.119-133
    • /
    • 2020
  • Fama asserted that in an efficient market, we can't make a trading rule that consistently outperforms the average stock market returns. This study aims to suggest a machine learning algorithm to improve the trading performance of an intraday short volatility strategy applying asymmetric volatility spillover effect, and analyze its trading performance improvement. Generally stock market volatility has a negative relation with stock market return and the Korean stock market volatility is influenced by the US stock market volatility. This volatility spillover effect is asymmetric. The asymmetric volatility spillover effect refers to the phenomenon that the US stock market volatility up and down differently influence the next day's volatility of the Korean stock market. We collected the S&P 500 index, VIX, KOSPI 200 index, and V-KOSPI 200 from 2008 to 2018. We found the negative relation between the S&P 500 and VIX, and the KOSPI 200 and V-KOSPI 200. We also documented the strong volatility spillover effect from the VIX to the V-KOSPI 200. Interestingly, the asymmetric volatility spillover was also found. Whereas the VIX up is fully reflected in the opening volatility of the V-KOSPI 200, the VIX down influences partially in the opening volatility and its influence lasts to the Korean market close. If the stock market is efficient, there is no reason why there exists the asymmetric volatility spillover effect. It is a counter example of the efficient market hypothesis. To utilize this type of anomalous volatility spillover pattern, we analyzed the intraday volatility selling strategy. This strategy sells short the Korean volatility market in the morning after the US stock market volatility closes down and takes no position in the volatility market after the VIX closes up. It produced profit every year between 2008 and 2018 and the percent profitable is 68%. The trading performance showed the higher average annual return of 129% relative to the benchmark average annual return of 33%. The maximum draw down, MDD, is -41%, which is lower than that of benchmark -101%. The Sharpe ratio 0.32 of SVS strategy is much greater than the Sharpe ratio 0.08 of the Benchmark strategy. The Sharpe ratio simultaneously considers return and risk and is calculated as return divided by risk. Therefore, high Sharpe ratio means high performance when comparing different strategies with different risk and return structure. Real world trading gives rise to the trading costs including brokerage cost and slippage cost. When the trading cost is considered, the performance difference between 76% and -10% average annual returns becomes clear. To improve the performance of the suggested volatility trading strategy, we used the well-known SVM algorithm. Input variables include the VIX close to close return at day t-1, the VIX open to close return at day t-1, the VK open return at day t, and output is the up and down classification of the VK open to close return at day t. The training period is from 2008 to 2014 and the testing period is from 2015 to 2018. The kernel functions are linear function, radial basis function, and polynomial function. We suggested the modified-short volatility strategy that sells the VK in the morning when the SVM output is Down and takes no position when the SVM output is Up. The trading performance was remarkably improved. The 5-year testing period trading results of the m-SVS strategy showed very high profit and low risk relative to the benchmark SVS strategy. The annual return of the m-SVS strategy is 123% and it is higher than that of SVS strategy. The risk factor, MDD, was also significantly improved from -41% to -29%.

A Study on Chinese Traditional Auspicious Fish Pattern Application in Corperate Identity Design (중국 전통 길상 어(魚)문양을 응용한 중국 기업의 아이덴티티 디자인 동향)

  • ZHANG, JINGQIU
    • Cartoon and Animation Studies
    • /
    • s.50
    • /
    • pp.349-382
    • /
    • 2018
  • China is a great civilization which is a combination of various ethnic groups with long history change. As one of these important components of traditional culture, the lucky shape has been going through the ideological upheaval of the history change of China. Up to now, it has become the important parts which can stimulate the emotion of Chinese nation. The lucky shape becomes the basis of the rich traditional culture by long history of the Chinese nation. Even say it is the centre of this traditional culture resource. The lucky shape is a way of expressing the Chinese history and national emotions. It is the important part of people's living habits, emotion, as well as the cultural background. What's more, it has the value of beliefs of Surname totem. Meanwhile, it also has the function of passing on information. The symbol of information finally was created by the being of lucky shape to indicate its conceptual content. There are various kinds of lucky shapes. It will have its limitations when researching all kinds of them professionally. So, here the lucky shape of FISH will be researched. The shape of fish is the first good shape created by the Chinese nation. It is about 6000 years. Its special shape and lucky meaning embody the peculiar inherent culture and intension of the Chinese nation. It's the important component of the Chinese traditional culture. The traditional shape of fish was focused on the continuation of history and the patterns recognition, etc. It seldom indicated the meaning of the shape into the using of the modern design. So by searching the lucky meaning & the way of fish shape, the purpose of the search is to explore the real analysis of value of the fish shape in the modern enterprise identity design. The way of search is through the development of the history, the evolvement and the meaning of lucky of the traditional fish shape to analyse the symbolic meaning and the cultural meaning from all levels in nation, culture, art and life, etc. And by using the huge living example of the enterprise identity design of the traditional shape of the fish to analyse that how it works in positive way by those enterprise which is based on the trust with good image. In the modern Chinese enterprise identity design, the lucky image will be reinterpreted in the modern way. It will be proofed by the national perceptual knowledge of the consumer and the way of enlarge the goodwill of corporate image. It will be the conclusion. The traditional fish shape is the important core of modern design.So this search is taken through the instance of the design of enterprise image of the traditional fish shape to analysis the idea of the majority Chinese people of the traditional luck and the influence of corporation which based on trust and credibility. In modern image design of Chinese corporation, the auspicious sign reappear. The question survey is taken by people through the perceptual knowledge of the consumer and the cognition the enterprise image. According the result, people can speculate the improvement of consumer's recognition and the possibility of development of traditional concept.

Characteristic and Application Under the Sericulture of Subtropical Zones Mulberry Adapted Itself to the Field Cultivation (노지재배(露地栽培)에 적응(適應)한 아열대산(亞熱帶産) 뽕나무의 특성(特性)과 양잠(養蠶)에서의 응용(應用))

  • Seok Young-Seek;Park Sang-Jo;An Sin-Hun;Han Sang-Mi;Yeo Joo-Hong;Han Myung-Sae
    • Journal of Sericultural and Entomological Science
    • /
    • v.47 no.2
    • /
    • pp.68-77
    • /
    • 2005
  • A characteristic of subtropical zones region MK-T2 compares with an gaeryangppong, and the 9-10 schedule the times when a leaf blooms to are fast, and ratio that a branch edge by the colds becomes lean showed 5.7%, and a growth of the new branch which went out delivers 67.2 cm, mulberry loaves of the new branch which went out, and 18.6, a form of a leaf is the 1.10 that length of a leaf grew more a bit than width of a leaf up. Thickness of a leaf is $228.2{\mu}m$, and an area is more similar than gaeryangppong as $225.6cm^2$. in plant taxonomy, the hair whom the style exists short with 0.7 mm, and go to the pistil head inside so as to be rare is distributed, and belong to Dolichostylae Pubescentes. The new branch cutting which executed without remedy processes was independent of a thickness of a case branch, and the form and 100% root was said, and an gaeryangppong compared with the fact that 10% root went out of 15 mm ideal, and was excellent very, and looked, a root went out a root the soil and water, all showed a characteristic to go out at central of a branch bases at 45% ratio. Length was 24.6 mm, and were water rate 78.8%, and mulberry of MK-T2 was carrying together sweetness and acidity to pH 4.7 while, besides, arrival was 19.21 Brix%. A larva period and pupa ratio, cocoon thickness ratio are almost similar to gaeryangppong, or weight of one cocoon, cocoon thickness, 20,002 cocoon quantity shows some results to drop, and be soft of a leaf, and feed value certifications are comparatively top-ranking. As a result of having analyzed amino acid of the 3rd day of 5th silkworm larva which bred to MK-T2, a collation absorbing an gaeryangppong went, and looked, but compared with a collation in case of tests to eat MK-T2, and looked, and the lie collations were not detected a difference at Leu, but MK-T2 tests were detected mutual almost similar amino acid creation. medical efficacy of the 3rd day of 5th silkworm larva ethanol extract which bred to MK-T2 and black results, histologic a case did not appear at HE dyeing about the kidney organization which extracted form the rats which ate a silkworm ethanol extract and dyeing all chemical organization immunity, and one step protein revelation became lower with almost unidentified levels.

Statistical Analysis of Operating Efficiency and Failures of a Medical Linear Accelerator for Ten Years (선형가속기의 10년간 가동률과 고장률에 관한 통계분석)

  • Ju Sang Gyu;Huh Seung Jae;Han Youngyih;Seo Jeong Min;Kim Won Kyou;Kim Tae Jong;Shin Eun Hyuk;Park Ju Young;Yeo Inhwan J.;Choi David R.;Ahn Yong Chan;Park Won;Lim Do Hoon
    • Radiation Oncology Journal
    • /
    • v.23 no.3
    • /
    • pp.186-193
    • /
    • 2005
  • Purpose: To improve the management of a medical linear accelerator, the records of operational failures of a Varian CL2l00C over a ten year period were retrospectively analyzed. Materials and Methods: The failures were classified according to the involved functional subunits, with each class rated Into one of three levels depending on the operational conditions. The relationships between the failure rate and working ratio and between the failure rate and outside temperature were investigated. In addition, the average life time of the main part and the operating efficiency over the last 4 years were analyzed. Results: Among the recorded failures (total 587 failures), the most frequent failure was observed in the parts related with the collimation system, including the monitor chamber, which accounted for $20\%$ of all failures. With regard to the operational conditions, 2nd level of failures, which temporally interrupted treatments, were the most frequent. Third level of failures, which interrupted treatment for more than several hours, were mostly caused by the accelerating subunit. The number of failures was increased with number of treatments and operating time. The average life-times of the Klystron and Thyratron became shorter as the working ratio increased, and were 42 and $83\%$ of the expected values, respectively. The operating efficiency was maintained at $95\%$ or higher, but this value slightly decreased. There was no significant correlation between the number of failures and the outside temperature. Conclusion: The maintenance of detailed equipment problems and failures records over a long period of time can provide good knowledge of equipment function as well as the capability of predicting future failure. Wore rigorous equipment maintenance Is required for old medical linear accelerators for the advanced avoidance of serious failure and to improve the qualify of patient treatment.