• Title/Summary/Keyword: 환형 역류형 연소기

Search Result 11, Processing Time 0.028 seconds

Study of Design Optimization of Reverse-Annular Type Combustor for Small Gas Turbine Engine (선회형 보염구조의 환형 역류형 연소기 최적화)

  • Park, Hee-Ho;Kim, Ki-Tae;Sung, Ok-Seok;Lim, Byeung-Jun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.401-405
    • /
    • 2011
  • Although the APU combustors were developed successfully, it could face many unexpected hardships in a engine or a system operated under the severe environment. This study is to be verified and settled by experimently and analytically of the problems and issues occurred in a variety of engine and system operation tests.

  • PDF

Development and Test of Gas Turbine Combustor for Ground Vehicle PPU(Primary Power Unit) (지상용 가스터빈 주동력장치(PPU) 연소기의 개발과 시험평가)

  • Lee, Dong-Hun;Lee, Kang-Yeop;Chen, Seung-Bae;Yang, Soo-Suk;Ko, Young-Sung;Choi, Seong-Man
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.8
    • /
    • pp.111-121
    • /
    • 2005
  • A 100kW class gas turbine combustor was developed and tested for PPU(Primary Power Unit) of ground vehicle. The combustor which employed annular-reverse type and pressure swirl atomizer was designed through 1-D analysis, 3-D thermal flow analysis and combustor performance was experimentally investigated on the combustor test rig. The test result was satisfactory. The developed combustor was also tested for environmental and endurance specification under engine adopted conditions and the application of a state-of-the-art gas turbine combustor to ground vehicle PPU turned out to be successful.

Performance Test of A Reverse-Annular Type Combustor (TS2) for APU (보조동력장치용 환형 역류형 연소기 (TS2) 성능 시험)

  • Ko, Young-Sung;Han, Yeoung-Min;Yang, Soo-Seok;Lee, Dae-Sung;Yun, Sang-Sig;Choi, Sung-Man
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.840-845
    • /
    • 2001
  • Development of a small gas-turbine combustor for 100kW class APU(Auxiliary Power Unit) has been performed. This combustor is a reverse-annular type and has a tangential swirler in the liner head to improve the fuel/air mixing and flame stability. Three main and three pilot fuel injectors of the simplex pressure-swirl type are used. The performance target at the design condition includes a turbine inlet temperature of 1170K, a combustion efficiency of 99%, a pattern factor of 30%, and an engine durability of 3000 hours. Under developing the combustor, we conducted performance test of our first prototype(TS1) with some variants. As a result of the test, the performance targets of the combustor are satisfied except that the pattern factor is about 4% higher than target value. So, we redesigned the second prototype(TS2) and conduct performance test with the critical focus on pattern factor and exit mean temperature. We adopted TS2 four variant to check the improvement of pattern factor. As the result, the pattern factors of several variants were satisfied with the performance target. Finally, We chose the TS2A variant as a final combustor for our APU model.

  • PDF

Flmae Visualization of the sector combustor (분할연소기의 화염 가시화 연구)

  • Kim, Bo-Ra-Mi;Choi, Chea-Hong;Kim, Chun-Taek;Choi, Seong-Man
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.213-216
    • /
    • 2009
  • In order to see the flame behavior in the gas turbine combustor, combustion test was performed by using sector combustor. Ignition test with torch ignition system was carried out at the various combustor inlet velocity and air fuel ratio. Also, flame blow out limit was measured by changing fuel flow rate with fixed air mass flow rate. In the test results, stable ignition is possible at air excess ratio of 6 and this limit is gradually increased with combustor inlet air velocity. The minimum blow out limit is about 4 at 40 m/s of combustor inlet velocity. This blow out limit is also increased up to about 10 with increasing combustor inlet velocity.

  • PDF

Performance Test of A Reverse-Annular Type Combustor (TS2) for APU (보조동력장치용 환형 역류형 연소기 (TS2) 성능 시험)

  • Ko, Young-Sung;Han, Yeoung-Min;Lee, Kang-Yeop;Yang, Soo-Seok;Lee, Dae-Sung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.6
    • /
    • pp.805-810
    • /
    • 2002
  • Development of a small gas-turbine combustor for 100㎾ class APU(Auxiliary Power Unit) has been performed. This combustor is a reverse-annular type and has a tangential swiller in the liner head to improve the fuel/air mixing and flame stability. Three main and three pilot fuel injectors of the simplex pressure-swirl type are used. The performance target at the design condition includes a turbine inlet temperature of l170k, a combustion efficiency of 99%, a pattern factor of 30%, and an engine durability of 3000 hours. Under developing the combustor, we conducted the performance test of our first prototype(TS1) with some variants. As a result of the test, the performance targets of the combustor are satisfied except that the pattern factor is about 4% higher than the target value. Therefore, the second prototype(TS2) was redesigned and the performance test was conducted with the critical focus on the pattern factor and the exit mean temperature. We adopted TS2 four variants to check the improvement of the pattern factor. As a result, the pattern factors of several variants were satisfied with the performance target. Finally, the TS2A variant was chosen as a final combustor fur our APU model.

Troubleshooting of Combustor for Auxiliary Power Unit during Engine/System Test (엔진 및 체계시험 중 발생한 보조동력장치 연소기 문제해결과정)

  • Lim, Byeungjun;Park, Heeho;Lee, Seungjoon;Sung, Okseok
    • Aerospace Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.57-64
    • /
    • 2012
  • Although the APU combustors were developed successfully, it could face many unexpected hardships in an engine or a system operating under the severe environments. But, it is not easy to change the combustion field or combustor structure at the engine/system development stage. So we must suggest practical ways to optimize the value quantitatively by engine test and flow analysis, and verify those by the cyclic test. This paper describes reverse-annular type combustor troubleshooting processes for verifying and settling of the problems and issues occurred in various engine and system operation tests by experiment and analysis.

A Study of Flame Visualization of the APU Gas Turbine Engine Sector Combustor (APU용 가스터빈 엔진 분할연소기의 화염가시화 연구)

  • Kim, Bo-Ra-Mi;Choi, Chea-Hong;Choi, Seong-Man
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.4
    • /
    • pp.11-17
    • /
    • 2011
  • In order to see flame behavior in the annular reverse gas turbine combustor, sector combustion test was performed. Ignition test by using torch ignition system was carried out at various combustor inlet velocity and air fuel ratio. Also, flame blow out limit was measured by changing fuel flow rate with constant air mass flow rate. In test results, stable ignition is possible at air excess ratio of 6 and this limit is gradually increased with combustor inlet velocity. The minimum blow out limit is about 4 at 40 m/s of combustor inlet velocity. This blow out limit is also increased up to about 10 with increasing combustor inlet velocity. Test result shows that lean blow out limits are increased with air velocity. The highest blow out limit was found at the combustor inlet velocity of 65 m/s.

A Study of Flame Visualization of the APU Gas Turbine Engine Sector Combustor (APU용 가스터빈 엔진 분할연소기의 화염가시화 연구)

  • Kim, Bo-Ra-Mi;Choi, Chea-Hong;Choi, Seong-Man
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.153-159
    • /
    • 2010
  • In order to see the flame behavior in the annular reverse gas turbine combustor, sector combustion test was performed. Ignition test by using torch ignition system was carried out at the various combustor inlet velocity and air fuel ratio. Also, flame blow out limit was measured by changing fuel flow rate with constant air mass flow rate. In the test results, stable ignition is possible at air excess ratio of 6 and this limit is gradually increased with combustor inlet velocity. The minimum blow out limit is about 4 at 40 m/s of combustor inlet velocity. This blow out limit is also increased up to about 10 with increasing combustor inlet velocity. Test result shows that lean blow out limits are increased with air velocity. The highest blow out limit was found at the combustor inlet velocity of 65m/s.

  • PDF

DESIGN OF ANNULAR REVERSIBLE COMBUSTOR WITH 3 DIMENSIONAL CFD ANALYSIS (3차원 CFD해석을 이용한 환형 역류형 연소기설계)

  • Na, S.K.;Shim, J.K.;Park, H.H.;Lee, S.J.;Chen, S.B.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.247-251
    • /
    • 2010
  • It is very difficult to understand and estimate the heat transfer and flow characteristics in the combustor, which is one of main components in the Auxiliary Power Unit (APU), because its flow filed has very complex structure. In this paper, specified is characteristics of injection and flow through different air goles in the liner, which consist of large circular holes film cooling holes, and tangential air swirl holes. The durability of the liner depends on whether the surface of the liner is exposed to the hot gas over 1000 $^{\circ}C$ of a temperature or net. It is proved that the locations of hot spots estimated from the calculation using CFD are matched well with that from the test. In this study, CFD simulations were performed to examine the heat transfer and temperature distributions in and about a liner wall with film cooling on the wall. This computational study is based on the ensemble average continuity, compressible Navier-Stokes, energy, and PDF combustion equations closed by the standard $k-{\varepsilon}$ turbulence model with standard wall functions for the gas phase and the Fourier equations for conduction in the solid phase.

  • PDF