• Title/Summary/Keyword: 환형 관

Search Result 63, Processing Time 0.019 seconds

Two-Phase Jet Flow Characteristics in the Pure Oxygen Aeration System Using Two-phase Jet Nozzle (이상 제트 노즐을 사용한 순산소 폭기시스템의 이상유동 특성)

  • Jung, Chan-Hee;Lee, Kye-Bock
    • Journal of Energy Engineering
    • /
    • v.18 no.4
    • /
    • pp.258-263
    • /
    • 2009
  • Jet Loop Reactor(JLR), in which a two-phase nozzle is installed, is the new design technique for the treatment of high concentration wastewater by accelerating of oxygen contacting between substrate and surrounding bacteria. This numerical study of the two phase jet flow was conducted to find the optimum design of JLR. It was shown that there was a minimum velocity in the nozzle for continuous circulation of wastewater. The optimum location and the size of the draft tube for continuous circulation were examined. It was certain that the smaller the air size is, the more the effect of the mixing increases. The relation between the mixing effect and the turbulence was confirmed.

A Theoretical Study on the Fluid-Structure Interaction Due to the Pump in the Pressurized Water Reactor (원자로에서 펌프에 의해 야기되는 유체와 구조물 상호 작용에 대한 이론적 연구)

  • Lee, Kye-Bock;Jong Ryul park
    • Nuclear Engineering and Technology
    • /
    • v.27 no.5
    • /
    • pp.710-720
    • /
    • 1995
  • The propagation of pump-induced pressure pulsation in a reactor is important because of the potential for vibration and resultant damage of reactor internals. A hydrodynamic model has been developed to obtain the pressure fluctuation due to the operation of pumps in the annulus(between the core support barrel and reactor vessel of a pressurized water reactor) including the coolant inlet pipe. The mathematical analysis is formulated in accordance with the linearized Navier-Stokes equation by assuming a compressible, inviscid flow. Two regions are considered separately and by coupling the solutions of the inlet pipe and the annulus, the inlet nozzle pressure(pressure at pipe and annulus interface) is to be calculated without assumptions. The geometric parameter effect on the pump-induced pressure pulsation is evaluated. Comparison of predicted and measured inlet nozzle pressure values for each forcing frequency shows good order of magnitude agreement.

  • PDF

Large-Eddy Simulation of Turbulent Flow in a Concentric Annulus with Rotation of the Inner Cylinder (안쪽 실린더가 회전하는 동심 환형관 내 난류 유동의 대형와 모사)

  • Chung, Seo-Yoon;Sung, Hyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.4
    • /
    • pp.467-474
    • /
    • 2004
  • A large-eddy simulation is performed for turbulent flow in a concentric annulus with the inner wall rotation at Re$\sub$Dh/=8900 for three rotation rates N=0.2145, 0.429 and 0.858. Main emphasis is placed on the inner wall rotation effect on near-wall turbulent structures. Near-wall turbulent structures close to the inner wall are scrutinized by computing the lower-order statistics. The anisotropy invariant map for the Reynolds stress tensor and the invariant function are illustrated to reveal the altered anisotropy in turbulent structure. Probability density functions of the splat/anti-splat process are explored to develop a sufficiently complete picture of the contributions of the flow events to turbulent production. The present numerical results show that the altered turbulent structures may be attributed to the centrifugal instability, which leads to the augmentation of sweep and ejection events.

Direct Numerical Simulation of Turbulent Mixed Convection in Heated Vertical Annulus (수직 동심 환형관 내의 난류혼합대류 현상에 관한 직접수치모사)

  • Jun, Yong-Joon;Bae, Joong-Hun;Yoo, Jung-Yul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.9
    • /
    • pp.674-681
    • /
    • 2009
  • Turbulent mixed convection in heated vertical annulus is investigated using Direct Numerical Simulation (DNS) technique. The objective of this study is to find out the effect of buoyancy on turbulent mixed convection in heated vertical annulus. Downward and upward flows with bulk Reynolds number 8500, based on hydraulic diameter and mean velocity, have been simulated to investigate turbulent mixed convection by gradually increasing the effect of buoyancy. With increased heat flux, heat transfer coefficient first decreases and then increases in the upward flow due to the effect of buoyancy, but it gradually increases in downward flow. The mean velocity and temperature profiles can not be explained by the wall log laws due to the effect of buoyancy, too. All simulation results are in good quantitative agreement with existing numerical results and in good qualitative agreement with existing experimental results.

DNS of turbulent concentric annular pipe flow (동심 환형관 내의 난류유동의 직접수치모사)

  • Chung, Seo-Yoon;Rhee, Gwang-Hoon;Sung, Hyung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.461-466
    • /
    • 2000
  • Direct numerical simulations (DNS) is carried out to study fully-developed turbulent concentric annular pipe flow with two radius ratios at $Re_{Dh}\;=\;8900$. In case of $R_1/R_2\;=\;0.5$, the present result for the mean flow is in good agreement with the previous experimental data. Because of the transverse curvature effects, the distributions of mean flow and turbulent intensities are asymmetric in contrast to those of other fully-developed flows (channel and pipe flow). From the distributions of skewness of radial velocity fluctuations, it co be identified that all of the characteristics of channel, pipe and turbulent flow on a cylinder in axial flow can be appeared in concentric annular pipe flow.

  • PDF

DNS of turbulent heat transfer in a concentric annulus (동심 환형관 내 난류 열전달의 직접 수치 모사)

  • Chung Seo Yoon;Sung Hyung Jin
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.827-830
    • /
    • 2002
  • A direct numerical simulation is performed for turbulent heat transfer in a concentric annulus at $Re_{Dh}=8900\;and\;Pr=0.71$ for two radius ratios ($R_{1}/R_{2}=0.1\;and\;0.5$) and $q^{\ast}=1.0$. Main emphasis is placed on the transverse curvature effect on near-wall turbulent thermal structures. Near-wall turbulent structures close to the inner and outer walls are scrutinized by computing the lower-order statistics. The fluctuating temperature variance and turbulent heat flux budgets are illustrated to confirm the results of the lower-order statistics. The present numerical results show that the turbulent structures near the outer wall are more activated than those near the inner wall, which may be attributed to the different vortex regeneration processes between the inner and outer walls.

  • PDF

Friction Factors for Flow in Concentric Annuli with Rib-Roughened Wall (돌출형 거칠기벽이 있는 동심환형관의 유동에 대한 마찰계수)

  • Ahn, Soo Whan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.5
    • /
    • pp.587-592
    • /
    • 1999
  • The combined effects of radius ratio and roughness pitch ratio on the turbulent fluid flow characteristics of the fully developed flow in the annullar tubes with rib-roughened core walls were determined for Reynolds number ranging from 12,000 to 66,000. To understand the underlying physical phenomena responsible for friction factor enhancement, measurements of velocity profiles and zero shear stress and maximum velocity positions were combined to propose the friction factor correlation. Friction factors were found to be a function of the roughness pitch ratio and radius ratio.

Pressure Loss and Forced Convective Heat Transfer in an Annulus Filled with Aluminum Foam (발포 알루미늄이 삽입된 환형관에서의 압력손실 및 강제대류 열전달)

  • Noh Joo-Suk;Lee Kye-Bock;Lee Chung-Gu
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.9
    • /
    • pp.855-862
    • /
    • 2005
  • An experimental investigation has been carried out for aluminum foam heat sink inserted into the annulus to examine the feasibility as a heat sink for high performance forced water cooling in the annulus. The local wall temperature distribution, inlet and outlet pressures and temperatures, and heat transfer coefficients were measured for heat flux of 13.6, 18.9, 25.1, 31.4 $kw/m^2$ and Reynolds number ranged from 120 to 2000. Experimental results show that the friction factor is higher than clear annulus without aluminum foam, while the significant augmentation in Nu is obtained. This technique can be used for the compactness of the heat exchanger.

Direct numerical simulation of turbulent mixed convection in heated vertical annulus (수직 동심 환형관 내의 난류혼합대류 현상에 관한 직접수치모사)

  • Jun, Yong-Joon;Bae, Joong-Hun;Yoo, Jung-Yul
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2759-2764
    • /
    • 2008
  • Turbulent mixed convection in heated vertical annulus is investigated using Direct Numerical Simulation (DNS) technique. The objective of this study is to find out the effect of buoyancy on turbulent mixed convection in heated vertical annulus. Downward and upward flows with bulk Reynolds number 8500, based on hydraulic diameter and mean velocity, have been simulated to investigate turbulent mixed convection by gradually increasing the effect of buoyancy. With increased heat flux, heat transfer coefficient first decreases and then increases in the upward flow due to the effect of buoyancy, but it gradually increases in downward flow. The mean velocity and temperature profiles can not be explained by the wall log laws due to the effect of buoyancy, too. All simulation results are in good quantitative agreement with existing numerical results and in good qualitative agreement with existing experimental results.

  • PDF

A Study on the Flow of Drilling Fluids in Slim hole Annuli (굴착유체의 Slim Hole 환형관 내 유동특성에 관한 연구)

  • Seo Byung-Taek;Woo Nam-Sub;Hwang Young-Kyu
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.4
    • /
    • pp.370-376
    • /
    • 2006
  • The paper concerns an experimental study of fully developed laminar flow of a Newtonian and non-Newtonian liquid in concentric annuli with combined bulk axial flow and inner cylinder rotation. Pressure losses and skin friction coefficients have been measured for Newtonian fluid, water and non-Newtonian fluids, 0.2% aqueous of sodium carboxymethyl cellulose (CMC) and 5% bentonite solutions, when the inner cylinder rotates at the speed of $0{\sim}500$ rpm. The influences of rotation, radius ratio and working fluid on the annular flow field are investigated. And the new correlations among the skin friction coefficient, the Reynolds number and the Rossby number are presented with reasonable limits of accuracy in laminar flow regime.