• Title/Summary/Keyword: 환전류소

Search Result 3, Processing Time 0.017 seconds

3-Dimensional Design of Gradient Coils for Magnetic Resonance Imaging (자기공명영상촬영용 경사자계코일의 3차원설계)

  • Ryu, Yeun-Chul;Hyun, Jung-Ho;Lee, Heung-K.;Oh, Chang-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.235-237
    • /
    • 2006
  • In this paper, the previous 2-D gradient coil design method using loop current elements is extended to 3-D or multi-layer structures which is useful for various MRI applications including MR microscopic imaging where relatively large space may be available for the implementation of the gradient coils. Either the power consumption or the stored energy (thus, inductance), or the combination of the two can be minimized with a set of chosen target field constraints. Complete 3-D design equations for the optimization as well as inductance or resistance calculation are derived. An effective coil shape correction method for a curved current pattern is also developed. The design method can also be easily extended to the active shielding structure.

  • PDF

Minimum-Power and/or Minimum-Inductance Design of MRI Gradient Coils Using Loop-Current Elements (환전류소를 이용한 MRI용 경사자계코일의 최소전력/최소인덕턴스설계)

  • Lee, D.R.;Yang, Y.J.;Kim, S.K.;Ahn, C.B.;Lee, H.K.;Oh, C.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.05
    • /
    • pp.108-110
    • /
    • 1997
  • In MRI, gradient coils are needed for spatial selection and position coding to obtain the position information of the NMR signal. In this paper, a new design scheme for actively-shielded x, y-gradient coils, namely, a minimum-power and/or minimum-inductance design scheme using current-loop elements, has been proposed. Its utility in designing MRI gradient coils has been shown by using simulation. An actively-shielded x-gradient coil has been designed as an example and the results are presented. The design scheme seems to be useful for actively-shielded transverse gradient coils, even of non-cylindrical or of arbitrarily -selected shapes.

  • PDF