• Title/Summary/Keyword: 환자피폭선량

Search Result 445, Processing Time 0.031 seconds

Usefulness in Evaluation of NM Image which It Follows in Onco. Flash Processing Application (Onco. Flash Processing 적용에 따른 핵의학 영상의 유용성 평가)

  • Kim, Jung-Soo;Kim, Byung-Jin;Kim, Jin-Eui;Woo, Jae-Ryong;Kim, Hyun-Joo;Shin, Heui-Won
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.12 no.1
    • /
    • pp.13-18
    • /
    • 2008
  • Purpose: The image processing method due to the algorism which is various portion nuclear medical image decision is important it makes holds. The purpose of this study is it applies hereupon new image processing method SIEMENS (made by Pixon co.) Onco. flash processing reconstruction and the comparison which use the image control technique of existing the clinical usefulness it analyzes with it evaluates. Materials & Methods: 1. Whole body bone scan-scan speed 20 cm/min, 30 cm/min & 40 cm/min blinding test 2. Bone static spot scan-regional view 200 kcts, 400 kcts for chest, pelvis, foot blinding test 3. 4 quadrant-bar phantom-20000 kcts visual evaluation 4. LSF-FWHM resolution comparison ananysis. Results: 1. Raw data (20 cm/min) & processing data (30 cm/min)-similar level image quality 2. Low count static image-image quality clearly improved at visual evaluation result. 3. Visual evaluation by quadrant bar phantom-rising image quality level 4. Resolution comparison evaluation (FWHM)-same difference from resolution comparison evaluation Conclusion: The study which applies a new method Onco. flash processing reconstruction, it will be able to confirm the image quality improvement which until high level is clearer the case which applies the method of existing better than. The new reconstruction improves the resolution & reduces the noise. This enhances the diagnostic capabilities of such imagery for radiologists and physicians and allows a reduction in radiation dosage for the same image quality. Like this fact, rising of equipment availability & shortening the patient waiting move & from viewpoint of the active defense against radiation currently becomes feed with the fact that it will be the useful result propriety which is sufficient in clinical NM.

  • PDF

HVL Measurement of the Miniature X-Ray Tube Using Diode Detector (다이오드 검출기를 이용한 초소형 X선관(Miniature X-ray Tube)의 반가층 측정)

  • Kim, Ju-Hye;An, So-Hyeon;Oh, Yoon-Jin;Ji, Yoon-Seo;Huh, Jang-Yong;Kang, Chang-Mu;Suh, Hyunsuk;Lee, Rena
    • Progress in Medical Physics
    • /
    • v.23 no.4
    • /
    • pp.279-284
    • /
    • 2012
  • The X ray has been widely used in both diagnosis and treatment. Recently, a miniature X ray tube has been developed for radiotherapy. The miniature X ray tube is directly inserted into the body irradiated, so that X rays can be guided to a target at various incident angles according to collimator geometry and, thus, minimize patient dose. If such features of the miniature X ray tube can be applied to development of X ray imaging as well as radiation treatment, it is expected to open a new chapter in the field of diagnostic X ray. However, the miniature X ray tube requires an added filter and a collimator for diagnostic purpose because it was designed for radiotherapy. Therefore, a collimator and an added filter were manufactured for the miniature X ray tube, and mounted on. In this study, we evaluated beam characteristics of the miniature X ray tube for diagnostic X ray system and accuracy of measuring the HVL. We used the Si PIN Photodiode type Piranha detector (Piranha, RTI, Sweden) and estimated the HVL of the miniature X ray tube with added filter and without added filter. Through an another measurement using Al filter, we evaluated the accuracy of the HVL obtained from a direct measurement using the automatic HVL calculation function provided by the Piranha detector. As a result, the HVL of the miniature X ray tube was increased around 1.9 times with the added filter mounted on. So we demonstrated that the HVL was suitable for diagnostic X ray system. In the case that the added filter was not mounted on, the HVL obtained from use of the automatic HVL calculation function provided by Piranha detector was 50% higher than the HVL estimated using Al filter. Therefore, the HVL automatic measurement from the Piranha detector cannot be used for the HVL calculation. However, when the added filter was mounted on, the HVL automatic measurement value using the Piranha detector was approximately 15% lower than the estimated value using Al filter. It implies that the HVL automatic measurement can be used to estimate the HVL of the miniature X ray tube with the added filter mounted on without a more complicated measurement method using Al filter. It is expected that the automatic HVL measurement provided by the Piranha detector enables to make kV-X ray characterization easier.

Evaluation and Verification of the Attenuation Rate of Lead Sheets by Tube Voltage for Reference to Radiation Shielding Facilities (방사선 방어시설 구축 시 활용 가능한 관전압별 납 시트 차폐율 성능평가 및 실측 검증)

  • Ki-Yoon Lee;Kyung-Hwan Jung;Dong-Hee Han;Jang-Oh Kim;Man-Seok Han;Jong-Won Gil;Cheol-Ha Baek
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.4
    • /
    • pp.489-495
    • /
    • 2023
  • Radiation shielding facilities are constructed in locations where diagnostic radiation generators are installed, with the aim of preventing exposure for patients and radiation workers. The purpose of this study is seek to compare and validate the trend of attenuation thickness of lead, the primary material in these radiation shielding facilities, at different maximum tube voltages by Monte Carlo simulations and measurement. We employed the Monte Carlo N-Particle 6 simulation code. Within this simulation, we set a lead shielding arrangement, where the distance between the source and the lead sheet was set at 100 cm and the field of view was set at 10 × 10 cm2. Additionally, we varied the tube voltages to encompass 80, 100, 120, and 140 kVp. We calculated energy spectra for each respective tube voltage and applied them in the simulations. Lead thicknesses corresponding to attenuation rates of 50, 70, 90, and 95% were determined for tube voltages of 80, 100, 120, and 140 kVp. For 80 kVp, the calculated thicknesses for these attenuation rates were 0.03, 0.08, 0.21, and 0.33 mm, respectively. For 100 kVp, the values were 0.05, 0.12, 0.30, and 0.50 mm. Similarly, for 120 kVp, they were 0.06, 0.14, 0.38, and 0.56 mm. Lastly, at 140 kVp, the corresponding thicknesses were 0.08, 0.16, 0.42, and 0.61 mm. Measurements were conducted to validate the calculated lead thicknesses. The radiation generator employed was the GE Healthcare Discovery XR 656, and the dosimeter used was the IBA MagicMax. The experimental results showed that at 80 kVp, the attenuation rates for different thicknesses were 43.56, 70.33, 89.85, and 93.05%, respectively. Similarly, at 100 kVp, the rates were 52.49, 72.26, 86.31, and 92.17%. For 120 kVp, the attenuation rates were 48.26, 71.18, 87.30, and 91.56%. Lastly, at 140 kVp, they were measured 50.45, 68.75, 89.95, and 91.65%. Upon comparing the simulation and experimental results, it was confirmed that the differences between the two values were within an average of approximately 3%. These research findings serve to validate the reliability of Monte Carlo simulations and could be employed as fundamental data for future radiation shielding facility construction.

Utility of Wide Beam Reconstruction in Whole Body Bone Scan (전신 뼈 검사에서 Wide Beam Reconstruction 기법의 유용성)

  • Kim, Jung-Yul;Kang, Chung-Koo;Park, Min-Soo;Park, Hoon-Hee;Lim, Han-Sang;Kim, Jae-Sam;Lee, Chang-Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.1
    • /
    • pp.83-89
    • /
    • 2010
  • Purpose: The Wide Beam Reconstruction (WBR) algorithms that UltraSPECT, Ltd. (U.S) has provides solutions which improved image resolution by eliminating the effect of the line spread function by collimator and suppression of the noise. It controls the resolution and noise level automatically and yields unsurpassed image quality. The aim of this study is WBR of whole body bone scan in usefulness of clinical application. Materials and Methods: The standard line source and single photon emission computed tomography (SPECT) reconstructed spatial resolution measurements were performed on an INFINA (GE, Milwaukee, WI) gamma camera, equipped with low energy high resolution (LEHR) collimators. The total counts of line source measurements with 200 kcps and 300 kcps. The SPECT phantoms analyzed spatial resolution by the changing matrix size. Also a clinical evaluation study was performed with forty three patients, referred for bone scans. First group altered scan speed with 20 and 30 cm/min and dosage of 740 MBq (20 mCi) of $^{99m}Tc$-HDP administered but second group altered dosage of $^{99m}Tc$-HDP with 740 and 1,110 MBq (20 mCi and 30 mCi) in same scan speed. The acquired data was reconstructed using the typical clinical protocol in use and the WBR protocol. The patient's information was removed and a blind reading was done on each reconstruction method. For each reading, a questionnaire was completed in which the reader was asked to evaluate, on a scale of 1-5 point. Results: The result of planar WBR data improved resolution more than 10%. The Full-Width at Half-Maximum (FWHM) of WBR data improved about 16% (Standard: 8.45, WBR: 7.09). SPECT WBR data improved resolution more than about 50% and evaluate FWHM of WBR data (Standard: 3.52, WBR: 1.65). A clinical evaluation study, there was no statistically significant difference between the two method, which includes improvement of the bone to soft tissue ratio and the image resolution (first group p=0.07, second group p=0.458). Conclusion: The WBR method allows to shorten the acquisition time of bone scans while simultaneously providing improved image quality and to reduce the dosage of radiopharmaceuticals reducing radiation dose. Therefore, the WBR method can be applied to a wide range of clinical applications to provide clinical values as well as image quality.

  • PDF

Evaluation of Proper Image Acquisition Time by Change of Infusion dose in PET/CT (PET/CT 검사에서 주입선량의 변화에 따른 적정한 영상획득시간의 평가)

  • Kim, Chang Hyeon;Lee, Hyun Kuk;Song, Chi Ok;Lee, Gi Heun
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.2
    • /
    • pp.22-27
    • /
    • 2014
  • Purpose There is the recent PET/CT scan in tendency that use low dose to reduce patient's exposure along with development of equipments. We diminished $^{18}F$-FDG dose of patient to reduce patient's exposure after setting up GE Discovery 690 PET/CT scanner (GE Healthcare, Milwaukee, USA) establishment at this hospital in 2011. Accordingly, We evaluate acquisition time per proper bed by change of infusion dose to maintain quality of image of PET/CT scanner. Materials and Methods We inserted Air, Teflon, hot cylinder in NEMA NU2-1994 phantom and maintained radioactivity concentration based on the ratio 4:1 of hot cylinder and back ground activity and increased hot cylinder's concentration to 3, 4.3, 5.5, 6.7 MBq/kg, after acquisition image as increase acquisition time per bed to 30 seconds, 1 minute, 1 minute 30 seconds, 2 minute, 2 minutes 30 seconds, 3 minutes, 3 minutes 30 seconds, 4 minutes, 4 minutes 30 seconds, 5 minutes, 5 minutes 30 seconds, 10 minutes, 20 minutes, and 30 minutes, ROI was set up on hot cylinder and back radioactivity region. We computated standard deviation of Signal to Noise Ratio (SNR) and BKG (Background), compared with hot cylinder's concentration and change by acquisition time per bed, after measured Standard Uptake Value maximum ($SUV_{max}$). Also, we compared each standard deviation of $SUV_{max}$, SNR, BKG following in change of inspection waiting time (15minutes and 1 hour) by using 4.3 MBq phantom. Results The radioactive concentration per unit mass was increased to 3, 4.3, 5.5, 6.7 MBqs. And when we increased time/bed of each concentration from 1 minute 30 seconds to 30 minutes, we found that the $SUV_{max}$ of hot cylinder acquisition time per bed changed seriously according to each radioactive concentration in up to 18.3 to at least 7.3 from 30 seconds to 2 minutes. On the other side, that displayed changelessly at least 5.6 in up to 8 from 2 minutes 30 seconds to 30 minutes. SNR by radioactive change per unit mass was fixed to up to 0.49 in at least 0.41 in 3 MBqs and accroding as acquisition time per bed increased, rose to up to 0.59, 0.54 in each at least 0.23, 0.39 in 4.3 MBqs and in 5.5 MBqs. It was high to up to 0.59 from 30 seconds in radioactivity concentration 6.7 MBqs, but kept fixed from 0.43 to 0.53. Standard deviation of BKG (Background) was low from 0.38 to 0.06 in 3 MBqs and from 2 minutes 30 seconds after, low from 0.38 to 0 in 4.3 MBqs and 5.5 MBqs from 1 minute 30 seconds after, low from 0.33 to 0.05 in 6.7 MBqs at all section from 30 seconds to 30 minutes. In result that was changed the inspection waiting time to 15 minutes and 1 hour by 4.3 MBq phantoms, $SUV_{max}$ represented each other fixed values from 2 minutes 30 seconds of acquisition time per bed and SNR shown similar values from 1 minute 30 seconds. Conclusion As shown in the above, when we increased radioactive concentration per unit mass by 3, 4.3, 5.5, 6.7 MBqs, the values of $SUV_{max}$ and SNR was kept changelessly each other more than 2 minutes 30 seconds of acquisition time per bed. In the same way, in the change of inspection waiting time (15 minutes and 1 hour), we could find that the values of $SUV_{max}$ and SNR was kept changelessly each other more than 2 minutes 30 seconds of acquisition time per bed. In the result of this NEMA NU2-1994 phantom experiment, we found that the minimum acquisition time per bed was 2 minutes 30 seconds for evaluating values of fixed $SUV_{max}$ and SNR even in change of inserting radioactive concentration. However, this acquisition time can be different according to features and qualities of equipment.

  • PDF