• Title/Summary/Keyword: 환자테이블 처짐

Search Result 2, Processing Time 0.015 seconds

Analysis of Couch Sag Using Image Processing of MVCT Images in Tomotherapy (토모테라피에서 MVCT 영상을 이용한 환자 테이블의 처짐 정도의 분석)

  • Park, Ha Ryung;Kim, Yong Ho;Park, Dahl;Kim, Wontaek;Ki, Yongkan;Kim, Donghyun;Bae, Jin Suk
    • Progress in Medical Physics
    • /
    • v.26 no.2
    • /
    • pp.106-111
    • /
    • 2015
  • In Tomotherapy the couch sags during the treatment due to the weight of the patient. In this study, we developed a simple method to obtain the amount of the sag and the pitch angle of the couch using the image processing technique of MVCT images in Tomotherapy. Using the method we evaluated the sag and pitch of couch for 22 head and neck patients and one craniospinal irradiation (CSI) patient. The sag and the average pitch angle of couch were 0.40~1.54 mm and $0.7^{\circ}$ for head and neck patients, respectively. For head and neck patients, the sag increased as the longitudinal length of the irradiation volume increased and the pitch angle showed no relationship with the longitudinal length. For the CSI patient the sag was 4.97 mm. Using the method the amount of the couch sag could be measured easily and the measured data could be useful in determination of margins considering the table sag error.

Study of the CatcherTM Couch's Usefulness (토모치료기 CatcherTM Couch의 유용성에 대한 고찰)

  • Um, Ki Cheon;Lee, Chung Hwan;Jeon, Soo Dong;Song, Heung Kwon;Back, Geum Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.31 no.2
    • /
    • pp.65-74
    • /
    • 2019
  • Purpose: Recently, A Catcher was added to prevent sagging in Radixact® X9. In this study, We quantitatively compared general couch of Tomo-HDA® with catcher couch of Radixact® X9 using the human phantom and evaluated usefulness of catcher. Materials and methods: We used rando phantom for phantom study and set the each iso-center of head and neck region and Pelvis region for region parameter. Furthermore, We used hand made low melting point alloys for weight parameter. MVCT(Mega Voltage Computed Tomography) images were acquired for vertical error and rotation(pitch) error measurement increasing weight(A: 15kg, A+B: 30kg, A+B+C: 45kg). We selected 120 patients who has been treated using Tomotherpy machine for patient study. 60 patients has been treated in Tomo-HDA® and the other 60 patients treated in Radixact® X9. In the patient study methods, vertical error and rotation(pitch) error was measured for mean value calculation using MVCT images acquired on first day of radiation therapy. Result: Result of phantom study, Vertical error and rotation(pitch) error was increased proportionally increased as the weight increases in general couch of Tomo-HDA®. each maximum value was 7.52mm, 0.38° in head and neck region and 11.94mm, 0.92° in pelvis region. However, We could confirm that there was stable error range(0.02~0.1mm, 0~0.04°) in Catcher couch of Radixact®. Result of patient study, The head and neck region was measured 4.79mm 0.33° lower, and the pelvis region was measured 7.66mm, 0.22° lower in Catcher couch of Radixact® X9. Conclusion: In this study, Vertical error and rotation(pitch) error was proportionally increased as the weight increases in general couch of Tomo-HDA®. Especially, The pelvis region error was more increased than the head and neck region error. However, Vertical error and rotation(pitch) error was regularly generated regardless of weight or regions in CatcherTM couch of Radixact® X9 that this study's purpose. In conclusion, CatcherTM couch of Radixact® X9 can minimize mechanical error that couch sagging. Furthermore, The pelvis region is more efficiency than head and neck region. In radiation therapy using Tomotherapy machine, it is regarded that may contribute to minimizing unadjusted pitch error due to characters of Tomotherapy.