• Title/Summary/Keyword: 환자입사선량

Search Result 67, Processing Time 0.02 seconds

Measurement of Skin Dose from Using the Treatment Immobilization Devices (치료 보조기구 사용 시 후 방향 피부선량 측정)

  • Je, Jae-Yong;Park, Chul-Woo;Noh, Kyung-Suk
    • Journal of radiological science and technology
    • /
    • v.32 no.1
    • /
    • pp.107-110
    • /
    • 2009
  • The research was about the relation between the dorsal side dose measured by using the phantom body (Alderson Rando Phantom) and factors like contacted material of the patients, the size of the field, angle of incidence. Compared with mylar (tennis racket), the dose on $10{\times}10\;cm^2$ field size of cotton was increased by 2% and by 8% in the case of breast board. In the case of $15{\times}15\;cm^2$ field size, the dose was increased by 6% compared with $10{\times}10\;cm^2$ size. The field size of $20{\times}20\;cm^2$ resulted in 10% increase of dose, while $5{\times}5\;cm^2$ produced 13% decrease. Compared with incident angle $0^{\circ}$, the cases for the incident angle $5^{\circ}$ had 0.4% less dose for breast board, 0.5% for tennis racket, 1.1% for cotton. The cases for the incident angle $10^{\circ}$ had 1.5% less dose for breast board, 1.9% for tennis racket, 2.6% for cotton. For the incident angle $15^{\circ}$, breast board, tennis racket, cotton caused decrease of dose by 3.9%, 2.6%, 3.86% respectively. Resultantly carbon material can cause more skin dose in treatment field. By the results of this study, we recommend that one should avoid the contact between the carbon material and skin.

  • PDF

Prediction of Entrance Surface Dose in Chest Digital Radiography (흉부 디지털촬영에서 입사표면선량 예측)

  • Lee, Won-Jeong;Jeong, Sun-Cheol
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.4
    • /
    • pp.573-579
    • /
    • 2019
  • The purpose of this study is predicted easily the entrance surface dose (ESD) in chest digital radiography. We used two detector type such as flat-panel detector (FP) and IP (Imaging plate detector). ESD was measured at each exposure condition combined tube voltage with tube current using dosimeter, after attaching on human phantom, it was repeated 3 times. Phantom images were evaluated independently by three chest radiologists after blinding image. Dose-area product (DAP) or exposure index (EI) was checked by Digital Imaging and Communications in Medicine (DICOM) header on phantom images. Statistical analysis was performed by the linear regression using SPSS ver. 19.0. ESD was significant difference between FP and IP($85.7{\mu}Gy$ vs. $124.6{\mu}Gy$, p=0.017). ESD was positively correlated with image quality in FP as well as IP. In FP, adjusted R square was 0.978 (97.8%) and linear regression model was $ESD=0.407+68.810{\times}DAP$. DAP was 4.781 by calculating the $DAP=0.021+0.014{\times}340{\mu}Gy$. In IP, adjusted R square was 0.645 (64.5%) and linear regression model was $ESD=-63.339+0.188{\times}EI$. EI was 1748.97 by calculating the $EI=565.431+3.481{\times}340{\mu}Gy$. In chest digital radiography, the ESD can be easily predicted by the DICOM header information.

Radiological Perspectives for Diagnosis of Vasospastic Angina with Coronary Angiography (이형성 협심증 진단 조영 검사의 방사선학적 관점)

  • Jong-Gil Kwak;Young-Hyun Seo
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.4
    • /
    • pp.589-595
    • /
    • 2023
  • If complete coronary artery occlusion occurs due to severer coronary spasm, malignant arrhythmias can lead to death. Therefore, early screening for coronary artery spasm angina is essential. Among the test methods, the drug injection test through coronary angiography is generally performed. Therefore, the purpose of this study was to evaluate the advantages of ergonovine drug test for vasospasitc angina examination during coronary angiography, such as the relationship between the procedure time, contrast medium usage, and radiation exposure effects of coronary angiography. Follow-up data of 142 patients who underwent coronary angiography and variant angina examination from september 2021 to february 2023 were used. As a result of analyzing contrast usage dose and dose area product and air kerma dose and number of imaging series and procedure time, variant angina examination was statistically significantly higher than coronary angiography. (p<0.001) In conclusion, variant angina examination other than coronary artery angiography are radiologically negative. Therefore, we think it is better to avoid excessive inspection. Nevertheless, in the case of the provocation test, the longer the examination time, the higher the fluoroscopy time and the amount of contrast medium used, so it is better to conduct the test as quickly as possible or shorten it.

Image Evaluation for A Kind of Patient Fixing Pad in 64 Multi-Channel Detector Computed Tomograph (64 다중채널 검출기 전산화단층촬영에서 환자고정자 재질에 대한 영상평가)

  • Kim, Kee-Bok;Goo, Eun-Hoe
    • Journal of the Korea Convergence Society
    • /
    • v.7 no.1
    • /
    • pp.89-95
    • /
    • 2016
  • The purpose of this experiment intend to evaluate the quality of the image based on the orbit and basal ganglia with high radiosensitivity for the noise, SNR and dose using the five kinds patient fixing pad in brain phantom MDCT(BrillianceTM CT 64 slice, PHILIPS, Netherward). The noise had a higher values in AP than those of others, but the SNR was lower in AP than those of others. The SNR was higher in UP than those of RP, PP, SP and AP. The UP, RP and PP were no statistically significant(p>0.05), whereas it was significant difference between UP, RP, PP and SP, AP(p<0.05). This is causes of the noise difference is generated due to the differences in the radiation absorption dose in accordance with each the component of the absorbed dose level of the detector according to the reference line and each of SOML when the radiation exposured. The CTDIvol(mGy) and DLP of orbit and basal ganglia were 56.95, 911.50, respectively. There is no difference between both mean dose. In conclusion, it is possible to distinguish among a kind of 5 patient fixing pad by using brain phantom MDCT. Overall, patient fixing pad of UP, RP and PP based on a brain phantom MDCT can provide useful information.

Development of 2.5D Photon Dose Calculation Algorithm (2.5D 광자선 선량계산 알고리즘 개발)

  • 조병철;오도훈;배훈식
    • Progress in Medical Physics
    • /
    • v.10 no.2
    • /
    • pp.103-114
    • /
    • 1999
  • In this study, as a preliminary study for developing a full 3D photon dose calculation algorithm, We developed 2.5D photon dose calculation algorithm by extending 2D calculation algorithm to allow non-coplanar configurations of photon beams. For this purpose, we defined the 3d patient coordinate system and the 3d beam coordinate system, which are appropriate to 3d treatment planning and dose calculation. and then, calculate a transformation matrix between them. For dose calculation, we extended 2d "Clarkson-Cunningham" model to 3d one, which can calculate wedge fields as well as regular and irregular fields on arbitrary plane. The simple Batho's power-law method was implemented as an inhomogeneity correction. We evaluated the accuracy of our dose model following procedures of AAPM TG#23; radiation treatment planning dosimetry verifications for 4MV of Varian Clinac-4. As results, PDDs (percent depth dose) of cubic fields, the accuracy of calculation are within 1% except buildup region, and $\pm$3% for irregular fields and wedge fields. And for 45$^{\circ}$ oblique incident beam, the deviations between measurements and calculations are within $\pm$4%. In the case of inhomogeneity correction, the calculation underestimate 7% at the lung/water boundary and overestimate 3% at the bone/water boundary. At the conclusions, we found out our model can predict dose with 5% accuracy at the general condition. we expect our model can be used as a tool for educational and research purpose.. purpose..

  • PDF

Assessment of Effective Dose from Diagnostic X-ray Examinations of Adult (진단X선에 의한 성인의 진단행위별 유효선량평가)

  • Kim, Woo-Ran;Lee, Choon-Sik;Lee, Jai-Ki
    • Journal of Radiation Protection and Research
    • /
    • v.27 no.3
    • /
    • pp.155-164
    • /
    • 2002
  • Methodology to evaluate the effective doses to adults undergoing various diagnostic x-ray examinations were established by Monte Carlo simulation of the x-ray examinations. Anthropomorphic mathematical phantoms, the MIRD5 male phantom and the ORNL female phantom, were used as the target body and x-ray spectra were produced by the x-ray spectrum generation code SPEC78. The computational procedure was validated by comparing the resulting doses to the results of NRPB studies for the same diagnostic procedures. The effective doses as well as the organ doses due to chest, abdomen, head and spine examinations were calculated for x-rays incident from AP, PA, LLAT and RLAT directions. For instance, the effective doses from the most common procedures, chest PA and abdomen AP, were 0.029 mSv and 0.44 mSv, respectively. The fact that the effective dose from PA chest x-ray is far lower than the traditional value of 0.3 mSv(or 30 mrem), which results partly from the advances of technology in diagnostic radiology and partly from the differences in the dose concept employed, emphasizes necessities of intensive assessment of the patient doses in wide ranges of medical exposures. The methodology and tools established in this study can easily be applied to dose assessments for other radiology procedures; dose from CT examinations, dose to the fetus due to examinations of pregnant women, dose from pediatric radiology.

Investigation of organ dose difference of age phantoms for medical X-ray examinations (X선 촬영 시 연령별 장기선량 차이 연구)

  • Park, Sang-Hyun;Lee, Choon-Sik;Kim, Woo-Ran;Lee, Jai-Ki
    • Journal of Radiation Protection and Research
    • /
    • v.28 no.1
    • /
    • pp.35-42
    • /
    • 2003
  • Methodology for calculating the organ equivalent doses and the effective doses of pediatric and adult patients undergoing medical X-ray examinations were established. The MIRD-type mathematical phantoms of 4 age groups were constructed with addition of the esophagus to the same phantoms. Two typical examination procedures, chest PA and abdomen AP, were simulated for the pediatric patients as well as the adult as illustrative examples. The results confirmed that patients pick up approximate 0.03 mSv of effective dose from a single chest PA examination, and 0.4 to 1.7 mSv from an abdomen AP examination depending on the ages. For dose calculations where irradiation is made with a limited field, the details of the position, size and shape of the organs and the organ depth from the entrance surface considerably affect the resulting doses. Therefore, it is important to optimize radiation protection by control of X-ray properties and beam examination field. The calculation result, provided in this study, can be used to implement optimization for medical radiation protection.

Evaluation of Image According to Exposure Conditions using Contrast-Detail Phantom for Chest Digital Radiography (흉부 디지털 방사선 촬영 시 C-D phantom을 이용한 촬영조건에 따른 영상 평가)

  • Lee, In-Ja;Kim, You-Hyun;Kim, Chang-Nam;Lee, Chang-Yeob;Park, Kye-Yeon
    • Journal of radiological science and technology
    • /
    • v.32 no.1
    • /
    • pp.25-32
    • /
    • 2009
  • To find out proper photographing conditions in the chest DR imaging, the evaluation of images using the C-D phantom was carried out on relationship of identification capability, graininess, and exposure ratio. The conclusions were obtained as follows. 1. The patient's entrance skin Exposure (ESE) was decreased as tube voltage was increased. 2. According to the tube voltage change, the C-D phantom's identification capability of the exposure conditions was most visible at 110 kVp. 3. The identification capability according to the exposure ratio (mAs) change was most visible at 90 kVp for 0.5 times of low exposure ratio and at 110 kVp for 1.5 times. Therefore, it is known that the images were able to be better identified at a high exposure than a low exposure. 4. The graininess according to the exposure ratio at tube voltage of 110 kVp resulted in the best thing at 1.5 times of ratio when the exposure ratio was 1.5 times increased and the tube voltage was changed, the graininess showed the best result at 110 kVp. Therefore, the patient's exposure dose was low when kVp was increased and the adequate kVp was found to be 110. The image was better identified when exposure ratio was 1.5 times compared to 1.0 times. The graininess was also good when the exposure ratio became 1.5 times. The tube voltage was good at 110 kVp. However, once the exposure ratio is increased, the amount of radiation dose that the patients received get increased, so that the exposure condition has to be thoroughly considered.

  • PDF

The Necessity of Resetting the Filter Criteria for the Minimization of Dose Creep in Digital Imaging Systems (디지털 영상 시스템에서 선량 크리프 최소화를 위한 부가 필터 두께 권고 기준의 재설정에 대한 연구)

  • Kim, Kyo Tae;Kim, Kum Bae;Kang, Sang Sik;Park, Ji Koon
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.5
    • /
    • pp.757-763
    • /
    • 2019
  • Recently, Following the recent development of flat panel detector with wide dynamic ranges, increasing numbers of healthcare providers have begun to use digital radiography. As a result, filter thickness standards should be reestablished, as current clinical practice requires the use of thicknesses recommended by the National Council on Radiation Protection and Measurements, which are based on information, acquired using conventional analog systems. Here we investigated the possibility of minimizing dose creep and optimizing patient dose using Al filters in digital radiography. The use of thicker Al filters resulted in a maximum 19.3% reduction in the entrance skin exposure dose when medical images with similar sharpness values were compared. However, resolution, which is a critical factor in imaging, had a significant change of 1.01 lp/mm. This change in resolution is thought to be due to the increased amount of scattered rays generated from the object due to the X-ray beam hardening effect. The increase in the number of scattered rays was verified using the scattering degradation factor. However, the FPD, which has recently been developed and is widely used in various areas, has greater response to radiation than analog devices and has a wide dynamic range. Therefore, the FPD is expected to maintain an appropriate level of resolution corresponding to the increase in the scattered-ray content ratio, which depends on filter thickness. Use of the FPD is also expected to minimize dose creep by reducing the exposure dose.

The Effect of Source to Image-Receptor Distance(SID) on Radiation Dose for Digital Chest Radiography (Digital Chest Radiography에서 방사선량에 대한 Source to Image-Receptor Distance (SID)의 영향)

  • Kwon, Soonmu;Park, Changhee;Park, Jeongkyu;Son, Woonheung;Jung, Jaeeun
    • Journal of the Korean Society of Radiology
    • /
    • v.8 no.4
    • /
    • pp.203-210
    • /
    • 2014
  • Chest radiography has been typically performed at SID of 180 cm. Image quality and patient dose were investigated between 180 cm and 340 cm by 20 cm intervals at 120 kVp and 320 mAs with the AEC. VGA was performed for qualitative assessment and SNR was analysed for quantitative assessment on the image of the chest phantom. Patients dose was measured by ESAK and PCXMC was used for effective dose. As a result, when using the standard of SID of 180 cm which is typically used in the clinical practice, in the case of ESAK, 240 cm, 280 cm, and 320 cm were 8.7%, 11.47%, and 13.56% respectively therefore significant reduction was confirmed. In the case of effective dose, 2.89%, 4.67%, and 6.41% in the body and 5.08%, 6.09%, and 9.6% in lung were reduced. In the case of SNR, 9.04%, 8.24%, and 11.46% were respectively decreased especially, by 8.03% between SID of 260 cm and 300 cm, but SNR was 5.24 up to 340 cm. There were no significant differences in VGA thus the image is valuable in diagnosis. It is predicted that increasing SID up to 300 cm in digital chest radiography can reduce patient dose without decreasing image quality.