• Title/Summary/Keyword: 환원수소수

Search Result 255, Processing Time 0.027 seconds

Study on the Reduction Kinetics of In2O3 with Hydrogen (수소에 의한 In2O3의 환원반응속도론 연구)

  • Nahm, Kee-Suk;Kim, Youn-Sop;Lee, Wha-Young
    • Applied Chemistry for Engineering
    • /
    • v.3 no.2
    • /
    • pp.305-311
    • /
    • 1992
  • The experimental study on the reduction of $In_2O_3$ was performed by using thermogravimetric analyzer. The reduction of $In_2O_3$ was occurred at above $300^{\circ}C$. The reduction rates were rapidly increased with the reaction temperature, whilehardly affectedby the flow rate of hydrogen gas. It was found that the unreacted core model could be applied for the analysis of the reduction data and the rate control step was the chemical reaction of $In_2O_3$ with hydrogen on the surface of unreacted $In_2O_3$. The apparent activation energy for this reaction was 20kcal/g-mol $H_2$ and the rate equation of $In_2O_3$ reduction with hydrogen could be expressed in the following equation. ${\frac{dX}{dt}}=1.6{\times}10^5e^{-20000/RT}(1-X)^{2/3}$

  • PDF

A Study on Analysis of electrolyzed water properties with pH changes (pH 변화에 따른 전리수 분석에 관한 연구)

  • Kim, Baekma;Kim, Minjung;Kim, Wohyuk;Kim, Bongsuk;Ryoo, Kunkul
    • Clean Technology
    • /
    • v.10 no.1
    • /
    • pp.47-51
    • /
    • 2004
  • 현재 반도체 공정에서 사용되는 세정기술은 대부분이 1970년대 개발된 RCA 세정법인 과산화수소를 근간으로 하는 습식 세정으로, 표면의 입자를 제거하기 위한 SC-1 세정액은 강력한 산화제인 과산화수소에 의한 표면과 입자의 산화와 암모니아에 의한 표면의 에칭이 동시에 일어나 입자를 표면으로부터 분리시킨다. 금속 불순물을 제거하기 위한 SC-2 세정액은 염산과 과산화수소 혼합액을 사용하며 금속 불순물을 용해시켜 알칼리나 금속 이온을 형성하거나 용해 가능한 화합물을 형성시켜 제거한다. 또한 황산과 과산화수소를 혼합한 Piranha 세정액은 효과적인 유기물 제거제로서 웨이퍼에 오염된 유기물을 용해 가능한 화합물로 만들거나 과산화수소에 의해 형성되는 산화막내에 오염물을 포함시켜 불산 용액으로 산화막을 제거할 때 함께 제거된다. 최근 금속과 산화막을 동시에 제거하기 위해 희석시킨 불산에 과산화수소를 첨가한 세정공정이 사용되고 있으며 불산에 의해 표면의 산화막이 제거될 때 산화막내에 포함된 금속 불순물을 동시에 제거시킬 수 있다. 그러나 이와 같이 습식세정액 내에 공통적으로 포함되어 있는 과산화수소의 분해는 그만큼 가속화되어 사용되는 화학 약품의 양이 그만큼 증가하게 되고 조작하기 어려운 단점도 있다. 이를 해결하기 위해 환경친화적인 관점으로 화학약품의 사용을 최소화하는 등 RCA세정을 보완하는 연구가 계속 진행되고 있다. 본 연구에서는 RCA세정법을 환경적으로 대체할 수 있는 세정에 사용되는 전리수의 pH변화에 따른 전리수 분석을 하였다. 전리수의 제조를 위하여 전해질로는 NH4CI (HCI:H2O:NH4OH=1:1:1)를 사용하였다. pH 11 이상, ORP -700mV~-850mV인 환원수와 pH 3 이하, ORP 1000mV~1200mV인 산화수를 제조하였으며, 초순수를 첨가하여 pH 7.2와 ORP 351.1mV상태까지 조절하였다. 이렇게 만들어진 산화수와 환원수를 시간 변화와 pH 변화에 따라 Clean Room 안에서 FT-IR과 접촉각 측정기로 실험하였다. FT-IR분석에서 산화수는 pH가 높아질수록, 환원수는 낮아질수록 흡수율이 낮아졌다. 접촉각 실험에서는 산화수의 pH가 높아질수록 환원수의 pH가 낮아질수록 접촉각이 커짐을 확인하였다. 결론적으로 전리수를 이용하여 세정을 하면, 접촉성을 조절할 수 있어 반도체 세정을 가능하게 할 수 있으며, 환경친화적인 결과를 도출할 것으로 전망된다.

  • PDF

Simultaneous Catalytic Reduction of NO and N2O over Pd-Rh Supported Mixed Metal Oxide Honeycomb Catalysts - Use of H2 or CO as a Reductant (혼합금속산화물에 담지된 Pd-Rh의 허니컴 촉매에서 NO와 N2O의 동시 환원 - H2 또는 CO 환원제의 사용)

  • Lee, Seung Jae;Moon, Seung Hyun
    • Korean Chemical Engineering Research
    • /
    • v.47 no.1
    • /
    • pp.96-104
    • /
    • 2009
  • In order to lower a reaction temperature with high conversions for simultaneous catalytic reduction of NO and $N_2O$ over Pd-Rh supported mixed metal oxide honeycomb catalysts, $H_2$ or CO was utilized as a reductant. When using the reductants, the effects of reaction conditions were examined in NO and $N_2O$ conversions, where reaction temperatures, concentrations of the reductants and oxygen and the concentration ratio of $N_2O$ to NO were varied. In using $H_2$ reductant, larger than 50% of NO and $N_2O$ conversions was observed at the temperatures below $200^{\circ}C$ in absence of $O_2$. In using CO reductant, NO and $N_2O$ conversions increased from the temperatures higher than $200^{\circ}C$ and $300^{\circ}C$, respectively. However, in use of both reductants, NO and $N_2O$ conversions decreased with increasing oxygen concentration. As a result, $H_2$ reductant could reduce simultaneously NO and $N_2O$ at relatively lower reaction temperature than CO. Also, NO and $N_2O$ conversions were less influenced by using $H_2$ reductant than CO one. Concentration ratio between NO and $N_2O$ did not affect their conversions regardless the type of reductants. Pretreatment of the catalyst in $H_2$ was more effective in simultaneous reduction of NO and $N_2O$ at low reaction temperature than that in $O_2$.

Performance Evaluation of Hydrogen Separation and Generator for Hydrogen Water (수소수를 위한 수소분리 및 생성기 성능 평가)

  • Kim, Gui-Jung;Han, Jung-Soo
    • Journal of Digital Convergence
    • /
    • v.14 no.9
    • /
    • pp.281-286
    • /
    • 2016
  • In this paper, we optimized the structure of hydrogen water generator and assessed by developing a generator with dissolved hydrogen amount(1,000~1,200 ppb) of world-class level. Evaluation is divided into four types, such as dissolved hydrogen amount, pH, maximum pressure, redox potential, and it was evaluated for each of the targets. It was performed through the experiment of four in all five times and all of them show superiority results appearing in the target range. In addition, the assessment got 25/30 functionality, 17/20 maintainability, 26/30 usability, and 19/20 efficiency. In particular, we proved the validity of this study in high efficiency. We developed this hydrogen water generator system as possible to be substitution of water purifier.

Catalytic Reduction of Oxidized Mercury to Elemental Form by Transition Metals for Hg CEMS (수은 연속측정시스템에서 전이금속에 의한 산화수은의 원소수은으로의 촉매환원)

  • Ham, Sung-Won
    • Clean Technology
    • /
    • v.20 no.3
    • /
    • pp.269-276
    • /
    • 2014
  • This study was aimed to develop catalytic system for the dry-based reduction of oxidized mercury ($Hg^{2+}$) to elemental mercury ($Hg^0$) which is one of the most important components comprising mercury continuous emission monitoring system (Hg-CEMS). Based on the standard potential in oxidation-reduction reaction, transition metals including Fe, Cu, Ni and Co were selected as possible candidates for catalyst proceeding spontaneous reduction of $Hg^{2+}$ into $Hg^0$. These transition metal catalysts revealed high activity for reduction of $Hg^{2+}$ into $Hg^0$ in the absence of oxygen in reactant gases. However, their activities were greatly decreased in the presence of oxygen, which was attributed to the transformation of transition metals by oxygen to the corresponding transition metal oxides with less catalytic activity for the reduction of oxidized mercury. Hydrogen supplied to the reactant gases significantly enhanced $Hg^{2+}$ reduction activity even in the presence of oxygen. It might be due to occurrence of combustion reaction between $H_2$ and $O_2$ causing the consumption of $O_2$ at such high reaction temperature at which oxidized mercury reduction reaction took place. Because the system showed high activity for $Hg^{2+}$ reduction to $Hg^0$, which was compatible to that of wet-chemistry technology using $SnCl_2$ solution, the catalytic reduction system of Fe catalyst with the supply of $H_2$ could be employed as a commercial system for the reduction of oxidized mercury to elemental mercury.

Syngas and Hydrogen Production from $CeO_2/ZrO_2$ coated foam device under concentrated solar radiation (고온 태양열을 이용한 합성가스 및 수소 생산에서 $CeO_2/ZrO_2$가 코팅된 다공성 폼의 영향)

  • Jang, Jong-Tak;Yoon, Ki-June;Han, Gui-Young
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.307-313
    • /
    • 2011
  • 금속산화물을 이용한 2단계 산화/환원 반응은 GTL, CTL 의 반응원료인 합성가스 및 수소 생산기술이다. 이 기술은 메탄을 환원제로 사용함으로써 비교적 저온에서 산화/환원 반응을 할 수 있는 장점이 있다. 하지만 반복 사이클의 시연에서 금속산화물의 소결현상으로 인한 활성저하가 이 기술의 문제점 중의 하나이다. 본 연구에서는 2.5 kW Xenon arc lamp 가 설치된 solar simulator를 사용 하였으며, 무기물 다공성 폼 (SiC foam)및 유기물 다공성 폼 (Ni, Cufoam)에 $CeO_2/ZrO_2$ 를 코팅하여 연속적인 합성가스 및 수소 생산 가능성을 알아보았다. 반응 전 후의 $CeO_2/ZrO_2$ 의 결정 구조를 SEM 과 XRD 를 통해 분석하였다.

  • PDF

A optimization study on the preparation and coating conditions on honeycomb type of Pd/TiO2 catalysts to secure hydrogen utilization process safety (수소 활용공정 안전성 확보를 위한 Pd/TiO2 수소 상온산화 촉매의 제조 및 허니컴 구조의 코팅 조건 최적화 연구)

  • Jang, Young hee;Lee, Sang Moon;Kim, Sung Su
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.29 no.4
    • /
    • pp.47-54
    • /
    • 2021
  • In this study, the performance of a honeycomb-type hydrogen oxidation catalyst to remove hydrogen in a hydrogen economy society to secure leaking hydrogen. The Pd/TiO2 catalyst was prepared based on a liquid phase reduction method that is not exposed to a heat source, and it was showed through H2-chemisorption analysis that it existed as very small active particles of 2~4 nm. In addition, it was found that the metal dispersion decreased and the active particle size increased as the reduction reaction temperature increased. It was meant that the active metal particle size and the hydrogen oxidation performance were in a proportional correlation, so that it was consistent with the hydrogen oxidation performance reduction result. The prepared catalyst was coated on a support in the form of a honeycomb so that it could be applied to the hydrogen industrial process. When 20 wt% or more of the AS-40 binder was coated, oxidation performance of 90% or more was observed under low-concentration hydrogen conditions. It was showed through SEM analysis that long-term catalytic activity can be expected by enhancing the adhesion strength of the catalyst and preventing catalyst desorption. It is a basic research that can secure safety in a hydrogen society such as gasification, organic resource, and it can be utilized as a system that can respond to unexpected safety accidents in the future.

희토류 원소의 광 환원 침전

  • 김응호
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1997.10a
    • /
    • pp.47-50
    • /
    • 1997
  • 희토류원소의 광 환원 침전 특성이 연구되었다. 환원제로 isopropyl alcohol, 침전제로 (NH$_4$)$_2$SO$_4$가 사용되었다. 그리고 250nm의 파장을 방출하는 수은 램프가 사용되었다. Eu원소만을 함유하는 용액으로부터 Eu+3의 Eu+2로의 광 환원 결과는 97%이상이었으며 과산화수소가 소량 첨가되었을 경우 침전 속도는 증가하였다. 이 결과를 토대로 하여 희토류원소들(Sm,Eu,Gd)을 함유하는 수용액과 유기용액(HDEPH-Dodecan)에 UV광을 조사하였을 시 선택적으로 Eu을 분리해 낼 수 있었다. Eu의 침전 회수율은 두 상의 경우 모두 97%이상이었다.

  • PDF

The Effect of Some Binary Additive Systems in the Electrodeposition of Cadmium (카드뮴 전해석출에서의 이성분첨가물계의 효과)

  • Lee, Kyung Ho
    • Analytical Science and Technology
    • /
    • v.9 no.2
    • /
    • pp.161-167
    • /
    • 1996
  • An investigation was made of possible ways in which one could control the relative rates of cadmium deposition and hydrogen evolution by binary additive systems. Benzyl alcohol was employed as an additives due to its ability to form a hydrophobic film which inhibit the electroreduction of water to form hydrogen. The second additive was chosen to make the cadmium(II) ion less hydrophilic and increase its ability to cross the hydrophobic benzyl alcohol film and be electrodeposited at the cathode. It was shown by voltammetric and current efficiency studies that ion pairing and complexing additives could be used to accelerate the reduction of cadmium in the presence of the benzyl alcohol film. It was also shown that the benzyl alcohol film lowered the dielectric constant of the solution near the electrode enough to obtain ion pairing between the sodium ion and the negative chloride complex of cadmium and accelerate the reduction of the cadmium. This acceleration did not occur in the sulfate solution in the absence of chloride since cadmium(II) is primarily present as a positive aquo complex and ion pairing, if it occured, would not accelerate but would hinder reduction of cadmium.

  • PDF

Effect of Electrode Materials and Applied Potential in Electrocatalytic Reduction of Carbon Dioxide by Carbon Monoxide Dehydrogenase (일산화탄소탈수소화효소를 이용한 이산화탄소의 전기화학적 환원에 미치는 전극재료와 전위의 영향)

  • Shin, Jun Won;Kim, You-Sung;Song, Ji-Eun;Lee, Sang-Hee;Lee, Sang-Phil;Lee, Ho-Jun;Lim, Mi-Ran;Shin, Woon-Sup
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.3
    • /
    • pp.165-169
    • /
    • 2008
  • The effect of reduction of carbon dioxide by CODH(Carbon Monoxide Dehydrogenase) was compared on glassy carbon and gold working electrodes. In case of gold electrode, the choice of the optimum applied potential is very important since $H_2$ evolution can be mixed with $CO_2$ reduction. On the other hand, efficient $CO_2$ reduction was observed up to -650 mV vs. NHE on glassy carbon in neutral solution due to the larger overpotential for $H_2$ evolution on glassy carbon surface than that on gold surface. The optimum potential for $CO_2$ reduction was found to be $-570{\sim}600\;mV$ vs. NHE. The current efficiency of $CO_2$ to CO decreased dramatically at more negative potential according to the activity of enzyme decrease and the hydrogen evolution.