• Title/Summary/Keyword: 환원공정

Search Result 673, Processing Time 0.028 seconds

Effects of Different Pretreatment Methods and Amounts of Reductant on Preparation of Silver-coated Copper Flakes Using Electroless Plating (무전해 도금에 의한 은코팅 구리 플레이크의 제조에서 전처리 공정 및 환원제 양의 영향)

  • Oh, Sang Joo;Kim, Ji Hwan;Lee, Jong-Hyun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.2
    • /
    • pp.97-104
    • /
    • 2016
  • In the preparation of Ag-coated Cu flakes using L-ascorbic acid as a reductant for the electroless Ag plating, the effects of pretreatment methods and the reductant concentration on the uniformity of Ag coating layer and the anti-oxidation property of Ag-coated Cu flakes during the heating in air were evaluated. It was found that the removal degree of surface oxide layer during the pretreatment has great influence on the uniformity of Ag coating layer and the formation degree of hole defects in the flakes has slight effect on the anti-oxidation property of Ag-coated Cu flakes. It was also verified that the reductant concentration has great influence on the coverage uniformity and thickness of Ag coating, thus it was could be considered a main process parameter. When the reductant concentration was 0.04 M, high-quality Ag-coated Cu flakes was obtained. When the concentration increased to 0.06 M, however, the anti-oxidation property of Ag-coated Cu flakes became remarkably worse owing to remnant of Cu surface non-coated with Ag by the formation of pure Ag fine particles.

Cesium Release Behavior during the Thermal Treatment of High Bum-up Spent PWR Fuel (고연소도 경수로 사용후핵연료의 열처리에 따른 세슘 방출거동)

  • Park, Geun-Il;Cho, Kwang-Hun;Lee, Jung-Won;Park, Jang-Jin;Yang, Myung-Seung;Song, Kee-Chan
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.1
    • /
    • pp.53-64
    • /
    • 2007
  • The dynamic release behavior of Cs from high burn-up spent PWR fuel was experimentally performed under the conditions of a thermal treatment process such as voloxidation and sintering conditions. In voloxidation process, influence of the oxidation and reduction atmosphere on the Cs release characteristic using fragment type of spent fuel heated up to $1,500^{\circ}C$ was compared. In sintering process, temperature history effect on Cs release behavior was evaluated using green pellet under 4% $H_2/Ar$ environment. Temperature range for complete Cs release from spent fuel fragment under voloxidation condition was about $800^{\circ}C{\sim}1,200^{\circ}C$, but that of green pellet under the reduction atmosphere was $1,100^{\circ}C{\sim}1,400^{\circ}C$. Key parameters on Cs release behavior from spent fuel was powder formation as well as the diffusion rate of Cs compound to grain boundary and fuel surface.

  • PDF

Conversion of NOx by Plasma-hydrocarbon Selective Catalytic Reduction Process (플라즈마-탄화수소 선택적 촉매환원공정을 이용한 질소산화물 저감 연구)

  • Jo, Jin-Oh;Mok, Young Sun
    • Applied Chemistry for Engineering
    • /
    • v.29 no.1
    • /
    • pp.103-111
    • /
    • 2018
  • A plasma-catalytic combined process was used as an attempt to improve the conversion efficiency of nitrogen oxides ($NO_x$) over a wide temperature range ($150{\sim}500^{\circ}C$) to cope with the exhaust gas whose temperature varies greatly. Since the catalytic $NO_x$ reduction is effective at high temperatures where the activity of the catalyst itself is high, the $NO_x$ reduction was carried out without plasma generation in the high temperature region. On the other hand, in the low temperature region, the plasma was created in the catalyst bed to make up for the decreased catalytic activity, thereby increasing the $NO_x$ conversion efficiency. Effects of the types of catalysts, the reaction temperature, the concentration of the reducing agent (n-heptane), and the energy density on $NO_x$ conversion efficiency were examined. As a result of comparative analysis of various catalysts, the catalytic $NO_x$ conversion efficiency in the high temperature region was the highest in the case of the $Ag-Zn/{\gamma}-Al_2O_3$ catalyst of more than 90%. In the low temperature region, $NO_x$ was hardly removed by the hydrocarbon selective reduction process, but when the plasma was generated in the catalyst bed, the $NO_x$ conversion sharply increased to about 90%. The $NO_x$ conversion can be maintained high at temperatures of $150{\sim}500^{\circ}C$ by the combination of plasma in accordance with the temperature change of the exhaust gas.

Production Technology of Titanium by Kroll Process (Kroll법에 의한 타이타늄의 제조기술)

  • Sohn, Ho-Sang
    • Resources Recycling
    • /
    • v.29 no.4
    • /
    • pp.3-14
    • /
    • 2020
  • Titanium sponge is industrially produced by the Kroll process. In order to understand the importance of the emerging smelting and recycling process, it is necessary to review the conventional production process of titanium. Therefore this paper provides a general overview of the conventional titanium manufacturing system mainly by the Kroll process. The Kroll process can be divided into four sub-processes as follows: (1) Chlorination of raw TiO2 with coke, by the fluidized bed chlorination or molten salt chlorination (2) Magnesium reduction of TiCl4 and vacuum distillation of MgCl2 and Mg by reverse U-type or I-type with reduction-distillation integrated retorts (3) Electrolysis process of MgCl2 by monopolar cells or multipolar cells to electrolyze into chlorine gas and Mg. (4) Crushing and melting process in which sponge titanium is crushed and then melted in a vacuum arc furnace or an electron beam furnace Although the apparatus and procedures have improved over the past 80 years, the Kroll process is the costly and time-consuming batch operation for the reduction of TiCl4 and the separation of MgCl2.

A Review of Pilot Plant Studies on Elemental Mercury Oxidation Using Catalytic DeNOxing Systems in MW-Scale Coal Combustion Flue Gases (MW급 석탄연소 배가스에서 탈질촉매시스템을 이용한 원소수은 산화 실증사례)

  • Kim, Moon Hyeon;Nguyen, Thi Phuong Thao
    • Clean Technology
    • /
    • v.27 no.3
    • /
    • pp.207-216
    • /
    • 2021
  • Major anthropogenic emissions of elemental mercury (Hg0) occur from coal-fired power plants, and the emissions can be controlled successfully using NH3-SCR (selective catalytic reduction) systems with catalysts. Although the catalysts can easily convert the gaseous mercury into Hg2+ species, the reactions are greatly dependent on the flue gas constituents and SCR conditions. Numerous deNOxing catalysts have been proposed for considerable reduction in power plant mercury emissions; however, there are few studies to date of elemental mercury oxidation using SCR processes with MW- and full-scale coal-fired boilers. In these flue gas streams, the chemistry of the mercury oxidation is very complicated. Coal types, deNOxing catalytic systems, and operating conditions are critical in determining the extent of the oxidation. Of these parameters, halogen element levels in coals may become a key vehicle for obtaining better Hg0 oxidation efficiency. Such halogens are Cl, Br, and F and the former one is predominant in coals. The chlorine exists in the form of salts and is transformed to gaseous HCl with a trace amount of Cl2 during the course of coal combustion. The HCl acts as a very powerful promoter for high catalytic Hg0 oxidation; however, this can be strongly dependent on the type of coal because of a wide variation in the chlorine contents of coal.

Fabrication of Porous Cu Layers on Cu Pillars through Formation of Brass Layers and Selective Zn Etching, and Cu-to-Cu Flip-chip Bonding (황동층의 형성과 선택적 아연 에칭을 통한 구리 필라 상 다공성 구리층의 제조와 구리-구리 플립칩 접합)

  • Wan-Geun Lee;Kwang-Seong Choi;Yong-Sung Eom;Jong-Hyun Lee
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.4
    • /
    • pp.98-104
    • /
    • 2023
  • The feasibility of an efficient process proposed for Cu-Cu flip-chip bonding was evaluated by forming a porous Cu layer on Cu pillar and conducting thermo-compression sinter-bonding after the infiltration of a reducing agent. The porous Cu layers on Cu pillars were manufactured through a three-step process of Zn plating-heat treatment-Zn selective etching. The average thickness of the formed porous Cu layer was approximately 2.3 ㎛. The flip-chip bonding was accomplished after infiltrating reducing solvent into porous Cu layer and pre-heating, and the layers were finally conducted into sintered joints through thermo-compression. With reduction behavior of Cu oxides and suppression of additional oxidation by the solvent, the porous Cu layer densified to thickness of approximately 1.1 ㎛ during the thermo-compression, and the Cu-Cu flip-chip bonding was eventually completed. As a result, a shear strength of approximately 11.2 MPa could be achieved after the bonding for 5 min under a pressure of 10 MPa at 300 ℃ in air. Because that was a result of partial bonding by only about 50% of the pillars, it was anticipated that a shear strength of 20 MPa or more could easily be obtained if all the pillars were induced to bond through process optimization.

A Study on Analysis of electrolyzed water properties with pH changes (pH 변화에 따른 전리수 분석에 관한 연구)

  • Kim, Baekma;Kim, Minjung;Kim, Wohyuk;Kim, Bongsuk;Ryoo, Kunkul
    • Clean Technology
    • /
    • v.10 no.1
    • /
    • pp.47-51
    • /
    • 2004
  • 현재 반도체 공정에서 사용되는 세정기술은 대부분이 1970년대 개발된 RCA 세정법인 과산화수소를 근간으로 하는 습식 세정으로, 표면의 입자를 제거하기 위한 SC-1 세정액은 강력한 산화제인 과산화수소에 의한 표면과 입자의 산화와 암모니아에 의한 표면의 에칭이 동시에 일어나 입자를 표면으로부터 분리시킨다. 금속 불순물을 제거하기 위한 SC-2 세정액은 염산과 과산화수소 혼합액을 사용하며 금속 불순물을 용해시켜 알칼리나 금속 이온을 형성하거나 용해 가능한 화합물을 형성시켜 제거한다. 또한 황산과 과산화수소를 혼합한 Piranha 세정액은 효과적인 유기물 제거제로서 웨이퍼에 오염된 유기물을 용해 가능한 화합물로 만들거나 과산화수소에 의해 형성되는 산화막내에 오염물을 포함시켜 불산 용액으로 산화막을 제거할 때 함께 제거된다. 최근 금속과 산화막을 동시에 제거하기 위해 희석시킨 불산에 과산화수소를 첨가한 세정공정이 사용되고 있으며 불산에 의해 표면의 산화막이 제거될 때 산화막내에 포함된 금속 불순물을 동시에 제거시킬 수 있다. 그러나 이와 같이 습식세정액 내에 공통적으로 포함되어 있는 과산화수소의 분해는 그만큼 가속화되어 사용되는 화학 약품의 양이 그만큼 증가하게 되고 조작하기 어려운 단점도 있다. 이를 해결하기 위해 환경친화적인 관점으로 화학약품의 사용을 최소화하는 등 RCA세정을 보완하는 연구가 계속 진행되고 있다. 본 연구에서는 RCA세정법을 환경적으로 대체할 수 있는 세정에 사용되는 전리수의 pH변화에 따른 전리수 분석을 하였다. 전리수의 제조를 위하여 전해질로는 NH4CI (HCI:H2O:NH4OH=1:1:1)를 사용하였다. pH 11 이상, ORP -700mV~-850mV인 환원수와 pH 3 이하, ORP 1000mV~1200mV인 산화수를 제조하였으며, 초순수를 첨가하여 pH 7.2와 ORP 351.1mV상태까지 조절하였다. 이렇게 만들어진 산화수와 환원수를 시간 변화와 pH 변화에 따라 Clean Room 안에서 FT-IR과 접촉각 측정기로 실험하였다. FT-IR분석에서 산화수는 pH가 높아질수록, 환원수는 낮아질수록 흡수율이 낮아졌다. 접촉각 실험에서는 산화수의 pH가 높아질수록 환원수의 pH가 낮아질수록 접촉각이 커짐을 확인하였다. 결론적으로 전리수를 이용하여 세정을 하면, 접촉성을 조절할 수 있어 반도체 세정을 가능하게 할 수 있으며, 환경친화적인 결과를 도출할 것으로 전망된다.

  • PDF

The Adsorption of COS with a Modified-Activated Carbon for Ultra-Cleanup of Coal Gas (석탄가스의 초정밀 정제를 위한 변형된 활성탄의 흡착특성 연구)

  • Lee, You-Jin;Park, No-Kuk;Lee, Tae-Jin
    • Clean Technology
    • /
    • v.13 no.4
    • /
    • pp.266-273
    • /
    • 2007
  • The adsorption properties of the activated carbon-based adsorbents were studied to remove COS emitted from $SO_2$ catalytic reduction process on the integrated gasification combined cycle (IGCC) system in this work. Transition metal supported catalysts and mixed metal oxide catalysts were used for the $SO_2$ catalytic reduction. The mechanism of COS produced from the $SO_2$ reduction and the COS concentration s according to the reaction temperature were investigated. In this study, an activated carbon and a modified activated carbon doped with KOH were used to remove the very low concentration of COS effectively. The adsorption rate and the breakthrough time of COS were measured by a thermo gravity analyzer (TGA, Cahn Balance) and a fixed bed flow reactor equipped with GC-pulsed flammable photometric detector (PFPD), respectively. It was confirmed that the COS breakthrough time of the activated carbon doped with KOH was longer than that of an activated carbon. In conclusion, the modified-activated carbon having a high surface area showed a high adsorption rate of COS produced from the $SO_2$ reduction.

  • PDF

The Effects of SO2 and NH3 on the N2O Reduction with CO over MMO Catalyst (MMO 촉매와 CO 환원제에 의한 N2O 분해에서 SO2 및 NH3 영향 연구)

  • Chang, Kil Sang;You, Kyung-Chang
    • Applied Chemistry for Engineering
    • /
    • v.20 no.6
    • /
    • pp.653-657
    • /
    • 2009
  • Nitrous oxide is a typical greenhouse gas which is produced from various organic or fossil fuel combustion processes as well as chemicals producing plants. $N_2O$ has a global worming potential of 310 times that of $CO_2$ on per molecule basis, and also acts as an ozone depleting material in the stratosphere. However, its removal is not easy for its chemical stability characteristics. Most SCR processes with several effective reducing agents generally require the operation temperature higher than $450^{\circ}C$, and the catalytic conversion becomes decreased significantly when NOx is present in the stream. Present experiments have been performed to obtain basic design data of actual application concerning the effects of $SO_2$ and $NH_3$ on the interim and long term activities of $N_2O$ reduction with CO over the mixed metal oxide (MMO) catalyst derived from a hydrotalcite-like compound precursor. The MMO catalysts used in the experiments, have shown prominent activities displaying full conversions of $N_2O$ near $200^{\circ}C$ when CO is introduced. The presence of $SO_2$ is considered to show no critical behavior as can be met in the $NH_3$ SCR DeNOx systems and the effect of $NH_3$ is considered to play as mere an impurity to share the active sites of the catalysts.

Characteristic Reactions in Anaerobic Nitrogen Removal from Piggery Waste (돈사폐수의 혐기성 질소제거공정에서 일어나는 특이반응)

  • Hwang, In-Su;Min, Kyung-Sok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.3
    • /
    • pp.300-307
    • /
    • 2006
  • Anaerobic ammonium oxidation(ANAMMOX) is a novel process fur treatment of piggery waste with strong nitrogen. In this study, we investigated acid fermentation of organic matter, denitrificatiot reduction of sulfur compounds and P crystalization by hydroxyapatite during the treatment of wastewater with high strength of ammonium and organic matters by ANAMMOX process. Also, functions of hydroxylamine and hydrazine as intermedeates of ANAMMOX process were tested. This study reveals that various complex-reactions with anaerobic ammonium oxidation of piggery waste are happened and hydroxylamine and hydrazine play an important role in ANAMMOX reaction.