• Title/Summary/Keyword: 환원공정

Search Result 673, Processing Time 0.029 seconds

Environmental Effect of the Reduced Slag in the Electric Furnace (전기로 제강 환원슬래그 혼합토의 환경적 영향)

  • Na, Hyunsu;Yoon, Yeowon;Yoon, Gillim
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.7
    • /
    • pp.23-29
    • /
    • 2011
  • The oxidation slag has been widely used in civil engineering project, whereas the reduced slag from electric furnace has yet to be applied. Consequently in order to find out the recycling method in civil engineering field, the mineral compositions of the reduced slag were analyzed and some tests on water quality were performed to estimate the potential release of toxic compounds. Slag-soil mixtures of 0, 10, 20 and 30%(dry weight) soil were prepared in lysimeter columns and the effluents were collected with the period of one, two and four week options in closed system, respectively. The result from qualitative and quantitative analysis using X-ray Diffraction(XRD) and X-ray Fluorescence(XRF) indicates that the main mineral of the reduced slag is $Ca_2(SiO_4)$, a kind of calcium silicate. Also, the leaching medium analyzed by Inductively Coupled Plasma Optical Emission Spectroscopy(ICP-OES) showed that main heavy metals such as Al, Fe and Mn are included in the reduced slag due to the effect of steel production process. It can be seen that the leachate does not violate the regulation guide line of waste material of heavy metal. Also the pH levels were increased from pH 6.9 for 0% soil to pH 10 for 30% soil. However the influence on leachate circulation period of one through four weeks was negligible.

Treatment of high hexavalent chromium plating wastewater (고농도 6가 크롬 도금 폐수 처리)

  • Kang, Chang Duk;Sim, Sang Jun;Hwang, Suk Hoon
    • Clean Technology
    • /
    • v.7 no.1
    • /
    • pp.75-80
    • /
    • 2001
  • In this study, hexavalent chromium (Cr(VI)) plating wastewater in strong acidic condition was treated by reduction and alkalization. Ferrous sulfate ($FeSO_4$), known to reduce Cr(VI) to Cr(III) rapidly at acidic pH, was used as a reductant of Cr(VI). The optimum reduction condition of Cr(VI) was observed at iron to chromium dose ratio of 3:1 by mole concentration. The precipitation of Cr(III) as $Cr(OH)_3$, was achieved by the pH adjustment in the limestone aeration bed. The precipitates were removed less than the upper limit of chromium for effluent at pH over 5.0. The continuous removal of Cr(VI) was performed using the process consisting of reduction vessel, limestone aeration bed, and sedimentation tank coupled with metal screen membrane. As pH was maintained around 5.0 in the limestone aeration bed, insoluble chromic hydroxide flocs was formed continuously. Most chromic hydroxide flocs were filtered by the metal screen membrane with 1450 mesh size, and the treated water to meet the upper limits of chromium for effluent (Cr Conc. 0.25~0.90 mg/l) was obtained in 30 minutes. Periodic backwashing decreased the fouling on the membrane rapidly.

  • PDF

Synthesis and Magnetic Properties of $Fe-TiO_2$ Nanocomposite Powders by Mechanical Alloying (기계적 합금화법에 의한 $Fe-TiO_2$ Nanocomposite의 합성 및 자기적 성질)

  • 홍대석;이성희;이충효;김지순;권영순
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2002.11a
    • /
    • pp.63-63
    • /
    • 2002
  • 현재 기계적 합금화법에서는 주로 합금을 구성하는 성분원소 분말을 불활성분위기에서 볼밀처리 함으로써 함금화를 시키거나 모합금에 산화물을 분산시켜 복합화시키는 공정을 통하여 각종 화합물, 비정질상 및 과포화고용체등의 준안정상의 합성 뿐만이 아니라 초미세조직의 생성에 관한 폭 넓은 분야의 연구가 행하여지고 있다. 한편 MA에서는 볼멀처리중 기계적 에너지의 투여에 의하여 실제 반응온도보다 낮은 온도에서 발생하는 특이한 화학반응 즉 Mechanochemical 반응을 일으키 기도 한다. 본 연구에서는 헤마타이트($Fe_20_3$)와 금속윈소인 Ti의 MA처리에 의하여 고상환원반응 을 유기시켜 $Fe-TiO_2$계 nanocomposite 분말재료를 제조하고자 한다. 특히 MA 공정에 있어서 자기 물성의 변화와 X선 회절을 통하여 고상환원반응에 의한 복합분말의 생성과정을 조사하였다. 출발원료는 $Fe_20_3$(고순도화학제,99.9%, 평균입경 0.1$\mu\textrm{m}$)와 금속원소인 Ti(99.9%, 명균업경 150$\mu\textrm{m}$)을 몰비 2:3의 조성이 되도록 하여 MA를 실시하였다. 볼멀은 고에너지 유성형 볼밀장치(독일 제, Fritsch P-5)를 이용하였으며 진공치환형 용기에 원료분말을 장입하여 2회정도 진공배기한 후 아르곤 가스를 충전하여 볼밀을 행하였다. 얻어진 분말시료에 대하여 x-선 회절장치, 전자현미경 (SEM) 및 진동시료형자력계(VSM)를 통하여 결정구조, 미셰조직 빛 자기특성을 조사하였다. $Fe_2O_3-Ti$ 혼합분말의 MA처리 에 의하여 초기단계부터 환원반응과 함께 $Fe_3TIO_{lO}$ 중간상이 관찰 되었으나 30hrs의 MA처리 후 Fe와 산화물 $TiO_2$로 모두 환원되어 $Fe-TiO_2$계 나노복합분말이 얻어짐을 알 수 있었다. 이 때 X션 회절피크의 line broadening으로부터 복합분말의 Fe 명균 결정립 크기는 24nm로 초미세 결정럽의 분말합금이었다. 포화자화값은 볼밀처리에 따라 점점 증가하여 MA 30시간에는 20.3emu/g로 포화됨을 알 수 있었다. 또한 보자력 Hc는 MA초기단계에 350e로 매우 낮으나 30시간 후에는 Hc값이 2600e로 매우 큰 값을 나타내었다. 이것은 환원반응결과 초기에 생성된 Fe의 결정립이 비교적 크고 결정결함이 적으나 볼밀처리를 30시간까지 행하면 Fe 결정렵의 미세화 빛 strain 증가로 magnetic hardening이 일어나기 때문인 것으로 사료된다.

  • PDF

Effect of heating on the quality characteristics and antioxidant activities of Baekseolgi made with arrowroot flour (열처리가 칡가루 및 이를 첨가한 백설기의 품질 특성과 산화방지활성에 미치는 영향)

  • Yeom, Juhee;Surh, Jeonghee
    • Korean Journal of Food Science and Technology
    • /
    • v.50 no.1
    • /
    • pp.83-91
    • /
    • 2018
  • Baekseolgi made with arrowroot flour (AF, 0 to 15% of rice flour) was steamed to examine the effect of heating on its antioxidant activity and physicochemical properties. Despite the presence of abundant dietary fiber and superior water-holding capacity of AF, moisture in baekseolgi was not significantly increased. This could partly be attributed to AF having 50% less moisture content than rice flour. Hence, hardness of baekseolgi was also not significantly altered. Total reducing capacity and flavonoid content of baekseolgi increased proportionally with the increase in AF addition. However, these values were lower than the predicted values calculated from the antioxidant activities of heated AF, which was more apparent in total reducing capacity. This indicated that the stability of non-phenolic reducing compounds in AF was lower than that of the phenolic compounds. Thermally processed baekseolgi made with 9% AF exhibited antioxidant activity without noticeable loss in the quality of the product.

Effect of Ozone Injection into Exhaust Gas on Catalytic Reduction of Nitrogen Oxides (촉매 공정의 배기가스 질소산화물 저감 성능에 미치는 오존주입의 영향)

  • Yun, Eun-Young;Mok, Young-Sun;Shin, Dong-Nam;Koh, Dong-Jun;Kim, Kyong-Tae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.3
    • /
    • pp.330-336
    • /
    • 2005
  • The ozone injection method was proposed to improve the catalytic process for the removal of nitrogen oxides ($NO_x$). Nitric oxide (NO) in the exhaust gas was first oxidized to nitrogen dioxide ($NO_2$) by ozone produced by dielectric barrier discharge, and then the exhaust gas containing the mixture of NO and $NO_2$ was directed to the catalytic reactor where both NO and $NO_2$ were reduced to $N_2$ in the presence of ammonia as the reducing agent. A commercially available $V_2O_5-WO_3/TiO_2$ catalyst was used as the catalytic reactor. The $NO_2$ content in the mixture of NO and $NO_2$ was changed by the amount of ozone added the exhaust gas. The effect of reaction temperature, initial $NO_x$ concentration, feed gas flow rate, and ammonia concentration on the removal of $NO_x$ at various $NO_2$ contents was examined and discussed. The increase in the content of $NO_2$ by the ozone injection remarkably improved the performance of the catalytic reactor, especially at low temperatures. The present ozone injection method appears to be promising for the improvement of the catalytic reduction of $NO_x$.

The Enhancement of Recycling Processes Efficiency of Lithium Ion Batteries; A Review (리튬이온전지 재활용공정 효율 향상을 위한 공정개선 연구동향)

  • Kyoungkeun Yoo;Wonhwa Heo;Bumchoong Kim
    • Resources Recycling
    • /
    • v.33 no.2
    • /
    • pp.24-36
    • /
    • 2024
  • The lithium-ion battery recycling process has been classified into direct recycling, hydrometallurgical process, and pyrometallurgical process. The commercial process based on the hydrometallurgical process produces black mass through pretreatment processes consisting of dismantling, crushing and grinding, heat treatment, and beneficiation, and then each metal is recovered by hydrometallurgical processes. Since all lithium-ion battery recycling processes under development conducts hydrometallurgical processes such as leaching, after the pretreatment process, to produce precursor raw materials, this article suggests a classification method according to the pretreatment method of the recycling process. The processes contain sulfation roasting, carbothermic reduction roasting, and alloy manufacturing, and the economic feasibility of the lithium-ion battery recycling process can be enhanced using unused by-products in the pretreatment process.

Separation of Iron and Nickel from Heavily Concentrated Aqueous Ferric Chloride Solution by Liquid-liquid Extraction (염화 제2철 농축 수용액으로부터의 액-액 추출에 의한 철과 니켈의 분리)

  • Park, Moo-Ryong;Kim, Young-Wook;Park, Jae-Ho;Park, Chin-Ho
    • Clean Technology
    • /
    • v.13 no.4
    • /
    • pp.274-280
    • /
    • 2007
  • A liquid-liquid solvent extraction process was developed in this study to recover Fe and Ni from heavily concentrated aqueous ferric chloride solution, in an effort to substitute the conventional iron reduction method. Solvent composition and extraction conditions were first developed from the laboratory experiments, and the pilot system was designed and built for commercialization. Stage numbers for extraction and stripping were determined from pilot plant runs, and other operation data were obtained for mass production.

  • PDF

A Study on environmental-friendly Cleaning for Si-wafers (환경친화적인 실리콘 웨이퍼 세정 연구)

  • Yoon, Hyoseob;Ryoo, Kunkul
    • Clean Technology
    • /
    • v.6 no.1
    • /
    • pp.79-84
    • /
    • 2000
  • In this study, to reduce the consumption of chemicals in cleaning processes, Si-wafers contaiminated with metallic impurities were cleaned with electrolyzed water(EW), which was generated by the electrolysis of a diluted electrolyte solution or ultra pure water(UPW). Electrolyzed water could be controlled for obtaining wide ranges of pH and ORP(oxidation-reduction potential). The pH and oxidation-reduction potential of anode water and cathode water were measured to be 4.7 and +1000mV, and 6.3 and -550mV, respectively. To analyze the amount of metallic impurities on Si-wafer surfaces, ICP-MS was introduced. Anode water was effective for Cu removal, while cathode water was more effective for Fe removal.

  • PDF

암모늄 우라닐 나이트레이트의 열분해 및 환원반응

  • 김병호;조병렬;최윤동;박진호;황성태;문재철;이기영
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05c
    • /
    • pp.46-51
    • /
    • 1996
  • 본 연구는 MDD(modified direct denitration)공정의 주 우라늄염인 암노늄 우라닐 나이트레이트의 화학특성을 밝히고 이들 화합물의 열분해 및 환원반응의 반응기구에 대하여 조사되었다. 암모늄 우라닐 나이트레이트는 제조 조건에 따라 N $H_4$$UO_2$N $O_3$와 (N $H_4$)$_2$$UO_2$(N $O_3$)$_4$.2$H_2O$의 두가지 형태의 복염으로 존재함이 화학 및 원소분석, X산 회절 분석, 그리고 적외선 분광분석에 의하여 확인되었다. 암모늄 우라닐 나이트레이트는 질소분위기에서 N $H_4$$UO_2$(N $O_3$)$_3$$\longrightarrow$ Amorphous $UO_3$$\longrightarrow$ a-$UO_3$$\longrightarrow$ U$_3$ $O_{8}$$\longrightarrow$ $\alpha$-U$_3$ $O_{8}$의 경로를 따라서 열분해 되며, 수소분위기에서는 N $H_4$$UO_2$(N $O_3$)$_3$$\longrightarrow$ $UO_3$$\longrightarrow$ U$_3$ $O_{8}$$\longrightarrow$ U$_4$ $O_{9}$ $\longrightarrow$ $UO_2$의 경로로 환원되었다.

  • PDF

High Purity Hydrogen Production by Redox Cycle Operation (산화-환원 싸이클 조업에 의한 고순도 수소생성)

  • Jeon, Bup-Ju;Park, Ji-Hun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.5
    • /
    • pp.355-363
    • /
    • 2010
  • High purity hydrogen, 97-99 vol.%, with CO at just ppm levels was obtained in a fixed bed of iron oxide employing the steam-iron cycle operation with reduction at 823K and oxidation in a steam-$N_2$ mixture at 773K TGA experiments indicated that temperature of the reduction step as well as its duration are important for preventing carbon build-up in iron and the intrusion of $CO_2$ into the hydrogen product. At a reduction temperature of 823K, oxide reduction by $H_2$ was considerably faster than reduction by CO. If the length of the reduction step exceeds optimal value, low levels of methane gas appeared in the off-gas. Furthermore, with longer durations of the reduction step and CO levels in the reducing gas greater than 10 vol.%, carbidization of the iron and/or carbon deposition in the bed exhibited the increasing pressure drop over the bed, eventually rendering the reactor inoperable. Reduction using a reducing gas containing 10 vol.% CO and a optimal reduction duration gave constant $H_2$ flow rates and off-gas composition over 10 redox reaction cycles.