• Title/Summary/Keyword: 환기량

Search Result 520, Processing Time 0.025 seconds

Social Distancing by Socioeconomic Characteristics during the Early Phase of COVID-19 Pandemic (코로나19 확산 초기의 사회경제적 특성별 사회적 거리두기 준수)

  • Kang, Eunjeong;Kim, Sun Jung;Shon, Changwoo;Koh, Kwangwook
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.1
    • /
    • pp.581-590
    • /
    • 2022
  • The purpose of this study was to ascertain the differences in social distancing practices by socioeconomic characteristics according to the national campaign on strong social distancing from March 22 through April 19. The data were obtained from the online survey performed by Embrain from May 13 through May 19. The sample consisted of 1,117 adults aged between 19 and 69. The campaign included six rules: to postpone or cancel unnecessary meeting, to refrain from going out, to keep personal hygiene, to stay home when sick, to ventilate frequently. Social distancing scores were defined as the proportion of items observed on a scale of 10. The multivariate regression analysis showed that type of housing and type of working were significantly related to social distancing scores. Study results imply that customized campaigns are needed for those from lower socioeconomic status.

A Study on Optimal Ventilation Design for Gas Boxes Installed in Semiconductor Manufacturing Equipment Handling Flammable Liquids (인화성 가스를 취급하는 반도체 제조장비에 설치된 가스박스 최적 환기 설계에 대한 연구)

  • Gyu Sun Cho;Sang Ryung Kim;Won Baek Yang
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.1
    • /
    • pp.63-69
    • /
    • 2023
  • Although Korea is the world's No. 1 semiconductor producing country, most studies are conducted with risk assessment for simple material risks due to the closedness of the site for industrial protection. In terms of industrial safety, a monitoring system such as a gas detector to determine the leakage of hazardous substances has been established, but research on effectively discharging harmful gastritis substances in case of leakage has only recently begun. Semiconductor manufacturing facilities (gas boxes) where a large amount of flammable materials are handled are currently being safety managed by using a gas detector and blocking the air inlet. It is difficult to dilute in a short time in case of leakage of flammable substances. Therefore, in this study, based on various criteria, the size of the duct according to the size of the gas box is determined and the appropriate size of the air inlet is studied to minimize the exhaust performance requirement without exposing hazardous chemicals to the outside in the event of a flammable leak. We want to do an optimal exhaust design.

Energy-Efficient Operation Simulation of Factory HVAC System based on Machine Learning (머신러닝 기반 공장 HVAC 시스템의 에너지 효율화 운영 시뮬레이션)

  • Seok-Ju Lee;Van Quan Dao
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.29 no.2
    • /
    • pp.47-54
    • /
    • 2024
  • The global decrease in traditional energy resources has prompted increasing energy demand, necessitating efforts to replace and optimize energy sources. This study focuses on enhancing energy efficiency in manufacturing plants, known for their high energy consumption. Through simulations and analyses, the study proposes a temperature-based control system for HVAC (Heating, Ventilating, and Air Conditioning) operations, utilizing machine learning algorithms to predict and optimize factory temperatures. The results indicate that this approach, particularly the prediction-based free cooling algorithm, can achieve over 10% energy savings compared to existing systems. This paper presents that implementing an efficient HVAC control system can significantly reduce overall factory energy consumption, with plans to apply it to real factories in the future.

The Effect of Deep Breathing Methods on Pulmonary Ventilatory Function of Patients Who experiened Upper-abdominal surgery (심호흡 방법에 따른 상복부 수술환자의 폐 환기능에 미치는 효과)

  • Hwang Jin-Hee;Park Hyung-Suk
    • Journal of Korean Academy of Fundamentals of Nursing
    • /
    • v.1 no.2
    • /
    • pp.129-147
    • /
    • 1994
  • The purpose of this study was to examine the effect of deep breathing exercise with Incentive Spirometer on the pulmonary ventilatory function of postoperative patients. This experiment was operated by quasi-experimental design which was compared pre-experimental measures with post-experimental ones. The subject of this study was 46 inpatients who were scheduled for elective upper abdominal surgery under the general anesthesia in P National University Hospital in Pusan and classified into the experimental group(23 patients) and control group(23 patients) by using Incentive Spirometer or unusing one. The data were collected from November, 1, 1993, to December, 31, 1993. The effects of the deep breathing exercise on the pulmonary ventilatory function were compared between experimental group who were recieved deep breathing exercise with Incentive Spirometer and control group who were recieved same method without Incentive Spirometer. The Forced Vital Capacity (FVC) and the First Second Forced Expiratory Volume ($FEV_1$) were represented as index of the pulmonary ventilatory function and those were measured by Vitalograph Compact. The collected data were analysed by SPSS/PC+ (percentage, average, standard deviation, chi-square test, t-test, and ANOVA). The results were as follow : (1) The $FVC_s$ of the experimental group were significantly increased in course of time, 24, 48, 72 hours after surgery(F=3.530, P=0.035). (2) The $FVC_s$ and $FEV_{1S}$ of the control group were significantly increased in course of time, 24, 48, 72 hours after surgery ($FVC_s$ : F=3.480, P=0.037, $FEV_{1S}$ : F=6. 153, P=0.004). (3) The FVC which was measured at 72 hours after surgery was significantly higher in the experimental group than in the control group(t=2.620, P=0.013). (4) The $FEV_{1s}$ which were measured at 24 and 72 hours after surgery were significantly higher in the experimental group than in the control group(24hr. : t=2.530, P=0.017, 72hr. : t=2.540, P=0.016). (5) Among general characteristics, sex was significant variable which influenced to effect of pulmonary ventilatory function. In conclusion, this study showed that the deep breathing exercise with Incentive Spirometer was more effective to recover the pulmonary ventilatory function after surgery than the deep breathing exercise without Incentive Spirometer.

  • PDF

Effect of Ketanserin and Positive End Expiratory Pressure Ventilation on Hemodynamics and Gas Exchange in Experimental Acute Pulmonary Embolism (실험적 급성 폐동맥색전증에서 Ketanserin과 Positive End Expiratory Pressure Ventilation이 혈류역학 및 환기에 미치는 영향)

  • Lee, Sang-Do;Lee, Young-Hyun;Han, Sung-Koo;Shim, Young-Soo;Kim, Keun-Youl;Han, Yong-Chol
    • Tuberculosis and Respiratory Diseases
    • /
    • v.40 no.2
    • /
    • pp.135-146
    • /
    • 1993
  • Background: In acute pulmonary embolism it has been postulated that the constriction of bronchi and pulmonary artery secondary to neurohumoral response plays an important role in cardiopulmonary dysfunction in addition to the mechanical obstruction of pulmonary artery. Serotonin is considered as the most important mediator. Positive end expiratory pressure (PEEP) stimulates $PGI_2$ secretion from the vascular endothelium, but its role in acute pulmonary embolism is still in controversy. Methods: To study the cardiopulmonary effect and therapeutic role of Ketanserin, selective antagonist of 5-HT2 receptor, and PEEP in acute pulmonary embolism experimental acute pulmonary embolism was induced in dogs with autologous blood clot. The experimental animals were divided into 3 groups, that is control group, Ketanserin injection group and PEEP application group. Results: Thirty minutes after embolization, mean pulmonary arterial pressure and pulmonary vascular resistance increased and cardiac output decreased. $PaO_2,\;P\bar{v}O_2$ and oxygen transport decreased and physiological shunt and $PaCO_2$ increased. After injection of Ketanserin, comparing with control group, mean pulmonary arterial pressure, pulmonary vascular resistance and physiological shunt decreased, while cardiac output, $PaO_2$ and oxygen transport increased. All these changes sustained till 4 hours after embolization. After PEEP application pulmonary vascular resistance, $PaO_2$ and $PaCO_2$ increased, while physiological shunt, cardiac output and oxygen transport decreased. After discontinuation of PEEP, mean pulmonary arterial pressure and pulmonary vascular resistance decreased and were lower than control group, while $PaO_2$ and cardiac output increased and higher than control group. $PaCO_2$ decreased but showed no significant difference comparing with control group. Conclusion: It can be concluded that Ketanserin is effective for the treatment of acute pulmonary embolism. With PEEP hemodynamic status deteriorated, but improved better than control group after discontinuation of PEEP. Thus PEEP may be applied carefully for short period in acute pulmonary embolism if the hemodynamic status is tolerable.

  • PDF

Relationships between Insensible Perspiration and Thermo Physiological Factors during Wearing Seasonal Clothing Ensembles in Comfort (쾌적한 상태에서 계절별 의복을 착용하고 있는 동안 불감증설과 온열 생리 요소들 간의 관련성)

  • Lee, Joo-Young;Choi, Jeong-Wha;Park, Joon-Hee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.31 no.12
    • /
    • pp.1700-1709
    • /
    • 2007
  • The purpose of this study was to examine the relationships between thermo-physiological factors and the insensible loss of body weight(IL) of resting women wearing seasonal comfortable clothing. Air temperature was maintained at a mean of 22.5, 24.7, and 16.8 for spring/fall, summer and winter, respectively. We selected a total of 26 clothing ensembles(8 ensembles for spring/fall, 7 ensembles for summer, and 11 ensembles for winter). The results showed that 1) IL was $19{\pm}5g{\cdot}m^{-2}{\cdot}hr$ for spring/fall environment, $21{\pm}5g{\cdot}m^{-2}{\cdot}hr$ for summer, $18{\pm}6{\cdot}m^{-2}{\cdot}hr$ for winter(p<.001). 2) Insensible water loss through respiratory passage(IWR) showed the reverse tendency to IL. IWR was $6{\pm}1g{\cdot}m^{-2}{\cdot}hr$ for winter and $5{\pm}1g{\cdot}m^{-2}{\cdot}hr$ for summer. This difference was significant(p<.001). 3) The proportion of IWR out of whole insensible water loss(IW), had a mean of the mean 28% for summer and 38% for winter(p<.001). 4) In comfort, the heat loss by IW out of heat production had a mean of 25% for spring/fall, 27% for summer, and 23% for winter. 5) There was a weak negative correlation between It and clothing insulation/body surface area covered by clothing. 6) There were significant correlations between IL and air temperature$(T_a)$, air humidity$(H_a)$, energy metabolism, ventilation, mean skin temperature $\={T}_{sk})$ and clothing microclimate humidity$(H_{clo})$. However, the coefficients were less than 0.5. In conclusion, there were weak relationships between the IL and thermo-physiological factors. However, when subjects rested in thermal comfort, the IL was maintained in a narrow range even though the clothing insulation and air temperature were diverse.

The Combined Therapy of Inhaled Nitric Oxide and Prone Positioning Has an Additive Effect on Gas Exchange and Oxygen Transport in Patients with Acute Respiratory Distress Syndrome (급성호흡곤란증후군 환자에서 복와위(prone position)와 산화질소흡입(nitric oxide inhalation) 병용 치료의 효과)

  • Koh, Youn-Suck;Lim, Chae-Man;Lee, Ki-Man;Chin, Jae-Yong;Shim, Tae-Sun;Lee, Sang-Do;Kim, Woo-Sung;Kim, Dong-Soon;Kim, Won-Dong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.45 no.6
    • /
    • pp.1223-1235
    • /
    • 1998
  • Background and Objective : Although prone positioning has been reported to improve gas exchange, prone positioning alone does not seem to be sufficient to increase systemic oxygen transport in an acute lung injury. The objective of this study was to investigate whether the combined therapy of low dose nitric oxide (NO) inhalation and prone positioning has an additive effect on the oxygenation and hemodynamics in patients with severe ARDS. Patients and Methods : Twelve patients with ARDS were included. Prone positioning alone, later combined with nitric oxide inhalation (5~10 ppm) from the supine position (baseline) were performed with serial measurement of gas exchange, respiratory mechanics and hemodynamic at sequential time points. The patient was regarded as a responder to prone positioning if an increase in $PaO_2/FiO_2$ of more than 20 mm Hg at 30 min or 120 min intervals after prone positioning was observed compared to that of the baseline. The same criterion was applied during nitric oxide inhalation. Results : Eight patients (66.5%) responded to prone positioning and ten patients (83.3%) including the eight just mentioned responded to the addition of NO inhalation. The $AaDO_2$ level also decreased promptly with the combination of prone positioning and NO inhalation compared to that of prone positioning alone ($191{\pm}109$ mm Hg vs. $256{\pm}137$ mm Hg, P<0.05). Hemodynamic parameters and lung compliance did not change significantly during prone positioning only. Following the addition of NO inhalation to prone positioning, the mean pulmonary artery pressure and pulmonary artery occlusion pressure decreased and cardiac output, stroke volume and oxygen delivery increased (P < 0.05) compared to those of prone 120 min. Conclusion : These findings indicate that NO inhalation would provide additional improvement in oxygenation and oxygen transport to mechanically ventilated patients with ARDS who are in a prone position.

  • PDF

Development of Heated-Air Dryer for Agricultural Waste Using Waste Heat of Incineration Plant (소각장 폐열을 활용한 농업폐기물 열풍 건조장치 개발)

  • Song, Dae-Bin;Lim, Ki-Hyeon;Jung, Dae-Hong
    • Journal of agriculture & life science
    • /
    • v.53 no.5
    • /
    • pp.137-143
    • /
    • 2019
  • To manufacturing of solid fuel by reuse of the wastes, the drying unit which have 500 kg/hr of drying capacity was developed and experimentally evaluate the performance. The spinach grown in Nam-hae island were used for the experiments and investigated of the heated-air drying characteristics as the inlet amount of raw materials, raw material stirring status, conveying type and drying time. The drying air heated by the energy derived from the steam which is supplied from the incineration plant. The moisture contents of raw materials were measured 85.65%. The inlet flow rate of drying air made a difference as the depth of the raw materials loaded on the drying unit and temperature has showed 108~144℃. The drying speed of the mixed drying more than doubled as that of non mixed drying under the same drying type, inlet amount, drying time and drying air temperature. In each experiment, the drying capacity have showed over 500 kg/hr. A drying efficiency of the ratio of drying consumption energy to input energy was 33.46%, lower than the average of 57.76% for the 157 conventional dryers. Because developed dryer must have a drying time of less than one hour, it is considered that the dry efficiency has been reduced due to the loss of wind volume during drying. If waste heat from incineration plant is used as a direct heat source, the dry air temperature is expected to be at least 160℃, greatly improving the drying capacity.

The Effects of Tidal Volume on Minimal Occlusion Pressure of Endotracheal Tube Cuff in Patients with Same Peak Inspiratory pressure (동일한 최고 흡기압(Peak inspiratory pressure)에서 기관 내관 풍선(Endotracheal tube cuff)의 최소 밀폐압(Minimal occlusion pressure)에 대한 상시량의 영향)

  • Sohn, Jang Won;Kim, Tae Hyung;Yoon, Ho Joo;Shin, Dong Ho;Park, Sung Soo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.57 no.5
    • /
    • pp.434-438
    • /
    • 2004
  • Background : An excessive endotracheal cuff pressure can cause tracheal injury, and insufficient cuff pressure may not generate an effective cuff seal. The peak inspiratory pressure influences the minimal occlusion pressure of the endotracheal tube cuff. However, the relationship between the minimal occlusion pressure and the tidal volume has not been investigated. This study was conducted to estimate the relationship between the tidal volume and the minimal occlusion pressure of the cuff. Methods : Ten mechanically ventilated patients were included. The minimal occlusion pressure of the cuff was measured using a pressure gauge. The basal tidal volume was increased and decreased as much as 10% whilst maintaining the same peak inspiratory pressure. The, minimal occlusion pressures were then measured in the high and low tidal volume state, respectively. Results : The peak inspiratory pressure was $32.6{\pm}4.72cmH_2O$ and the minimal occlusion pressure was $19.0{\pm}2.26$ mmHg in the basal ventilator setting. There was a significant relationship between the peak inspiratory pressure and the minimal occlusion pressure(r=0.77, p<0.01). The minimal occlusion pressure of the cuff was increased to $20.3{\pm}2.4$ mmHg in the high tidal volume state(p<0.05), and decreased to $16.8{\pm}3.01$ mmHg in the low tidal volume state (p<0.001). Conclusion : The minimal occlusion pressure of the cuff can be influenced by changes in the tidal volume as well as by the peak inspiratory pressure.

Hydrogen Compressor Cycle Analysis for the Operating Pressure of 50 MPa and High Charging Capacity (50 MPa급 대용량 수소압축기 사이클 해석)

  • Song, Byung-Hee;Myoung, No-Seuk;Jang, Seon-Jun;Kwon, Jeong-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.2
    • /
    • pp.66-73
    • /
    • 2020
  • In the hydrogen compression cycle, which is currently being developed, hydrogen is compressed to a very high pressure using a compressor, and then stored and used in a high-pressure vessel. This shows that an increase in the temperature of hydrogen in the vessel due to a pressure rise during the filling process and the pressure fatigue due to the repeated cycle may cause problems in the reliability of the vessel. In this paper, for the entire processes in a 50 MPa hydrogen compression system, theoretical and numerical methods were conducted to analyze the following: the temperature increase of hydrogen in the vessel and the time required to reach thermal equilibrium with the surroundings, the change in temperature of hydrogen passing through the pressure reducing valve, and the required capacity of the heat exchanger for cooling the vessel. The results will be useful for the design and construction of hydrogen compression systems, such as hydrogen charging stations.