• Title/Summary/Keyword: 환경 하중

Search Result 1,316, Processing Time 0.03 seconds

Technical Papers : Optimization Method of Structure by Using Coupled Load Analysis (기술논문 : 연성하중해석을 이용한 구조 최적화 기법 연구)

  • Lee,Yeong-Sin;Kim,In-Geol;Hwang,Do-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.1
    • /
    • pp.132-138
    • /
    • 2002
  • Of srategic importance nowdays is the development of high performance spacecraft bus. In this study, optimization for spacecraft structure is performed under the framework of coupled load analysis which is a branch of component mode synthesis with constrained mode and modal transient analysis. unlike the traditional method which uses the quasi-static table supplied by launch vehicle contractor, the present method adots the load results of previous coupled load analysis. It if shown that the proposed method can serve as a effective tool for the optimization spacecraft structure in the early stage of design and weight reduction by numerical example.

Investigating the Influence of Rate Dependency and Axial Force on the Seismic Performance Evaluation of Isolation Bearing (면진받침의 내진성능평가를 위한 실험 시 속도의존성과 수직하중의 영향)

  • Minseok Park;Yunbyeong Chae;Chul-Young Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.22-29
    • /
    • 2023
  • In the evaluation of seismic performance for structural materials and components, the loading rate and axial force can have a significant impact. Due to time-delay effects between input and output displacements, It is difficult to apply high-rate displacement in cyclic tests and hybrid simulations. Additionally, the difficulty of maintaining a consistent vertical load in the presence of lateral displacement has limited fast and real-time tests performed while maintaining a constant vertical load. In this study, slow, fast cyclic tests and real-time hybrid simulations were conducted to investigate the rate dependency and the influence of vertical loads of Isolation Bearing. In the experiment, the FLB System including an Adaptive Time Series (ATS) compensation and a state estimator was constructed for real-time control of displacement and vertical load. It was found that the vertical load from the superstructure and loading rate can have a significant impact on the strength of the seismic isolation bearing and its behavior during an earthquake. When conducting experiments for seismic performance evaluation, they must be implemented to be similar to reality. This study demonstrates the excellent performance of the system built and used for seismic performance evaluation and enables accurate and efficient seismic performance evaluation.

Analysis of Wind-Turbine Blade Behavior Under Static Dual-Axis Loads (풍력 블레이드에서 정적 이축하중 부하에 따른 거동 분석)

  • Son, Byung-Jik;Huh, Yong-Hak;Kim, Dong-Jin;Kim, Jong-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.3
    • /
    • pp.297-304
    • /
    • 2012
  • For the assessment of the performance of a wind-turbine blade, a simulated loading test may be required. In this study, the blade behavior was investigated through numerical analysis using a dual-axis loading test, closely simulating the real operation conditions. The blade structure for the 100-kW-class wind-turbine system was modeled using the finite element (FE) program ANSYS. The failure criteria and buckling analysis under dual-axis loading were examined. The failure analysis, including fiber failure and inter-fiber failure, was performed with Puck's failure criterion. As the dual-axis load ratio increases, the relatively increased stress occurs at the trailing edge and skin surface 3300-3600 mm away from the root. Furthermore, it is revealed that increasing the dual-axis load ratio makes the location that is weakest against buckling move toward the root part. Thus, it is seen that the dual-axis load test may be an essential requirement for the verification of blade performance.

Evaluation of the Performance Test Load through the Estimation of Vertical Loads on Vibration-Proof Fastening Systems (방진체결장치에 작용하는 수직하중 평가를 통한 성능시험하중 평가)

  • Yang, Sin Chu
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.6
    • /
    • pp.777-784
    • /
    • 2016
  • In this study, regulation of the performance test load of a vibration-proof fastening system used in urban railways was established through evaluation of the loads that it bears in the field. In order to investigate the range of the dynamic stiffness of the vibration-proof fastening system, dynamic stiffness tests were carried out for three types of vibration-proof fastening system that can be domestically supplied. Train and track interaction analyses in the frequency domain were carried out to evaluate the dynamic wheel loads. The track irregularity, which is a very important input factor in train and track interaction analysis, was considered as a PSD (Power Spectral Density) function, which was derived based on the measured data. The loads on the vibration-proof rail fastening system were evaluated considering various operating conditions in the urban railway. Regulation of the performance test load of the vibration-proof rail fastening system was established based on the evaluated loads.

A Study on Durability Enhancement of Hopper of the Transplanter (정식기 호퍼 내구성 향상에 관한 연구)

  • Lee, Dongkeun;Kim, Young-Joo;Yang, Seung-Hwan;Lee, Sangdae;In, Hyunki
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.51-51
    • /
    • 2017
  • 정식기는 주로 노외에서 사용되므로 사용자에 따라 극심한 작업환경 하에 놓일 수 있다. 사용 중 정식기 호퍼에 토양이나 자갈, 돌 등에 의해 반복적인 하중이 가해지거나 순간적인 충격하중이 가해져 취약부가 파손될 가능성이 있으므로, 토양과 직접 맞닿는 삽날부의 경우 내구성을 고려한 설계/제작이 필수적이다. 본 연구에서는 보행형 반자동 정식기 개발에서 고추묘와 같은 초장이 긴 작물의 묘를 효과적으로 이식할 수 있도록 개선된 삽날에 대해 기존 삽날과 강도 및 강성을 비교하고, 그 결과가 삽날의 내구성에 미칠 영향에 대하여 고찰하였다. 실험에는 양날 개폐 방식의 기존 및 개선삽날 2종이 사용되었으며, 각각 3회씩 정적 강도를 평가하였다. 실제 정식기 사용시 하중이 가해지는 방향은 삽날에 수직한 방향의 압축하중으로 이를 모사하여 일정변위 속도로 삽날에 하중을 가하였으며, 시험 진행시 DAQ 시스템을 통해 실시간으로 하중 및 변위 데이터를 저장하여 시험 종료 후 해당 데이터를 이용하여 $P-{\delta}$ 선도를 도출하였다. 시험 결과 기존삽날의 평균 최대하중이 개선삽날에 비해 높은 것으로 나타났으며, 최대 하중이 나타나는 지점의 변위의 경우, 기존삽날이 개선삽날에 비해 짧게 나타났다. 정적 강도측면에서 개선삽날이 기존삽날에 비해 최대 강도가 낮은 것으로 판단할 수 있으나, 실제 호퍼의 내구성에 영향을 줄 수 있는 주요 인자는 반복적으로 가해지는 비교적 낮은 수준의 충격하중으로 볼 수 있다. 이러한 관점에서 볼 때 일정 수준 이상의 강도를 가지면서, 기존삽날에 비해 낮은 강성을 가지는 개선삽날이 변형을 통한 충격에너지 흡수로 오히려 삽날 조립체(호퍼)의 내구성 측면에서 유리할 수 있다. 따라서 향후에는 기존 및 개선삽날을 적용한 호퍼에 대해 피로시험을 수행하여 관련 내용을 실험적으로 검증하고자 한다.

  • PDF

Numerical Investigation of Load Carrying Capacity of Geogrid-Encased Stone Columns under Foundation Load (구조물 기초하중 작용시 지오그리드 보강 쇄석말뚝의 하중지지 특성에 관한 수치해석 연구)

  • Yoo, Chung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.11
    • /
    • pp.75-86
    • /
    • 2009
  • This paper presents the results of a numerical investigation on load carrying capacity of geogrid-encased stone columns to use as load carrying column(s) supporting a foundation load. A validated 3D stress-pore pressure coupled model that can effectively show rapid drainage capability of stone columns and encasement effect of geogrid was adopted and a parametric study was carried out on a number of influencing factors. It is shown that the geogrid encased stone columns can be effectively used as foundation load supporting columns in soft ground. The results of numerical investigation were presented so that the relationship between the load carrying capacity of geogrid-encased stone columns and the influencing factors can be identified. Practical implications of the findings are also discussed.

Lateral Earth Pressures on Buried Pipes due to Lateral Flow of Soft Grounds (연약지반의 측방유동으로 인하여 매설관에 작용하는 측방토압)

  • Hong, Byungsik;Kim, Jaehong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.9
    • /
    • pp.27-38
    • /
    • 2010
  • A series of model test as well as numerical analysis by FEM was performed to investigate lateral earth pressure acting on a buried pipe in soft ground undergoing horizontal soil movement. A model test apparatus was manufactured so as to simulate horizontal soil movement in model soft ground, in which a model rigid buried pipe was installed. The velocity of soil deformation could be controlled as wanted during testing. The model test was performed on buried pipes with various diameters and shapes to investigate major factors affected the lateral earth pressure. The result of model tests showed that the larger lateral earth pressure acted on the buried pipes under the faster velocity of soil movement. The result of numerical analysis, which was performed under immediate loading condition, showed a similar behavior with the result of model tests under 0.3mm/min to 1.0mm/min velocity of soil deformation. Most of model tests showed the soil deformation-lateral load behavior, in which the first yielding load developed at small soil deformation and elastic behavior was observed by the yielding load. Then, lateral load was kept constant by the second yielding load, in which plastic behavior was observed between the first yielding load and the second yielding one. Beyond the second yielding load, the compression behavior zone was observed. When the velocity was too fast, however, the lateral load was increased with soil deformation beyond the first yielding load without showing the second yielding load. The buried pipes with the larger diameter was subjected to the larger lateral load and the larger increasing rate of lateral load. At small soil deformation, the influence of diameter and shape of buried pipes on lateral load was small. However, when soil deformation was increased considerably, the influence became more and more.

Design Load Analysis for Offshore Monopile with Various Estimation Methods of Ground Stiffness (지반강성 산정방법에 따른 해상 모노파일의 설계하중 해석)

  • Jang, Youngeun;Cho, Samdeok;Choi, Changho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.9
    • /
    • pp.47-58
    • /
    • 2014
  • This study explores methods for modeling the foundation-seabed interaction needed for the load analysis of an offshore wind energy system. It comprises the comparison study of foundation design load analyses for NREL 5 MW turbine according to various soil-foundation interaction models by conducting the load analysis with GH-Bladed, analysis software for offshore wind energy systems. Furthermore, the results of the aforementioned load analysis were applied to foundation analysis software called L-Pile to conduct a safety review of the foundation cross-section design. Differences in the cross-section of a monopile foundation were observed based on the results of the fixed model, winkler spring and coupled spring models, and the analysis of design load cases, including DLC 1.3, DLC 6.1a, and DLC 6.2a. Consequently, under all design load conditions, the diameter and thickness of the monopile foundation cross-section were found to be 7 m and 80 mm, respectively, using the fixed and coupled spring models; the results of the analysis conducted using the winkler spring model showed that the diameter and thickness of the monopile foundation cross-section were 5 m and 60 mm, respectively. The study found that the soil-foundation interaction modeling method had a significant impact on the load analysis results, which determined the cross-section of a foundation. Based on this study, it is anticipated that designing an offshore wind energy system foundation taking the above impact into account would reduce the possibility of a conservative or unconservative design of the foundation.

Vegetation Structure and Dynamics on Bars in Streams with Different Stream Bed Substrates (하상재료가 다른 하천의 하중도 환경에서 식생의 구조 및 동태)

  • Lee, Chang-Seok;Cho, Yong-Chan;Oh, Woo-Seok;Park, Sung-Ae;Seol, Eun-Sil
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1140-1144
    • /
    • 2007
  • 모래하천과 자갈하천의 하중도에 성립한 식생을 분석하여 하천복원과 복원된 하천의 사후 관리에서 요구되는 생태정보를 구축하였다. 모래하천의 하중도에는 버드나무군락, 물억새군락, 산조풀군락, 속속이풀군락, 큰개여뀌군락, 밭뚝외풀군락 등이 성립하였다. 이러한 식생자료를 서열법으로 처리한 결과, 식물의 배열은 천이경향을 반영하였고, 하중도의 미지형에 의해 결정된 지하수위 높이가 천이단계를 지배하는 것으로 판단되었다. 모래하천인 용수천의 하중도에서 상류로부터 하류를 향해 식생의 분포는 버드나무군락-물억새군락-산조풀군락-속속이풀군락의 순서를 보였다. 우점종의 생활형에 따라 이들을 구분하면, 이 순서는 목본 식물군락-다년생 식물군락-1년생 식물군락의 순서를 보였다. 이러한 식생의 배열로부터 하중도는 하류 방향으로 새로 생성되고 있음을 알 수 있었다. 자갈하천의 하중도에는 발달단계가 다른 세 개의 소나무군락과 초지가 성립하였다. 소나무군락은 유령림, 성숙목과 유령목이 혼합된 복층림, 그리고 성숙림으로 이루어졌다. 초지는 쑥, 달뿌리풀, 환삼덩굴, 소나무 실생, 황철나무 등이 산재하는 밀도가 낮은 식생으로 이루어졌다. 이러한 식생자료를 서열법으로 처리한 결과 여기에서도 식생의 배열은 천이경향을 반영하였다. 천이단계를 지배하는 요인은 홍수에 밀려온 자갈의 피복율로 나타났다. 상류로부터 하류를 향해 식생의 분포는 초지, 소나무 유령림, 소나무 복층림 및 소나무 성숙림의 순서를 보였다. 이러한 식생의 배열로부터 하중도는 상류방향으로 새로 성립하고 있음을 알 수 있었다.변지역에 거주하는 주민의 역할이 중요하며, 이에 따라 보 철거 선정 체계는 보 철거를 위해서 보 주변 지역 거주민을 설득하며, 하천의 환경 개선을 위한 합리적인 대안 제시를 목적으로 하고 있다. 선정 체계를 바탕으로 주민 협의 및 대안 제시를 통해 결정된 대상 보는 선정 체계 안에서 보 철거 영향 판단 절차에 따라서 보 철거로 인한 수문, 수리, 지형, 수질, 생태 영향을 판단하게 되며, 이와 더불어 사회 경제적인 영향을 평가하게 된다. 평가결과에 따라서 보를 완전히 철거하거나 다른 대안을 고려하여 보를 부분적으로 철거하거나 개량하게 된다.곳으로 1/3의 자기 생산을 담당하고 있었다. $\ulcorner$경상도지리지$\lrcorner$(慶尙道地理志)에는 $\ulcorner$세종실록$\lrcorner$(世宗實錄) $\ulcorner$지리지$\lrcorner$(地理志)와 동년대에 동일한 목적으로 찬술되었음을 알 수 있다. $\ulcorner$경상도실록지리지$\lrcorner$(慶尙道實錄地理志)에는 $\ulcorner$세종실록$\lrcorner$(世宗實錄) $\ulcorner$지리지$\lrcorner$(地理志)와의 비교를 해보면 상 중 하품의 통합 9개소가 삭제되어 있고, $\ulcorner$동국여지승람$

  • PDF

Bearing Behavior Characteristics of Pressure Penetrating Steel Pipe Pile Under Compression Load (압축하중을 받는 압입강관말뚝의 지지거동 특성)

  • Kwon, Ohkyun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.7
    • /
    • pp.5-13
    • /
    • 2015
  • The pressure penetrating steel pipe pile method which can be constructed in a narrow space using the hydraulic jack is used on the foundation reinforcement, extension of the structure and basement, restoration of the differential settlement etc.. This method is possible to construct in narrow areas and low story height, the non-noise and non-vibration works, and it is possible for the construction site to be clean without slime. And it is possible to confirm the bearing capacity of pile due to penetrating the pile with the compression load of hydraulic jack. In this study, the static load test with the load-transfer test was carried out to investigate the bearing behavior characteristics of the pressure penetrating steel pipe pile. Four series of static load test were executed to investigate the variation of bearing behavior of the pressure penetrating steel pipe pile. As a result of these tests, the allowable load of the pressure penetrating steel pipe was evaluated more than 637 kN, and the shaft resistance corresponding to 81~86% of each applied load was mobilized with only a small portion of the base resistance acting. And it was also evaluated that the unit skin friction was mobilized to maximum value after two months.