• Title/Summary/Keyword: 환경피로

Search Result 512, Processing Time 0.036 seconds

Hot ductility behavior of steel as low cycle high temperature fatigue (저주기 고온 피로에 따른 강의 열간 연성 거동)

  • 박병호;김현정;손광석;김동규
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.86-86
    • /
    • 2003
  • 주편은 1차 냉각 지역인 수냉 몰드를 통과한 후, 2차 냉각 지역에서 guide roll, pinch roll 그리고 driven roll등에 의해 반복적인 압축하중을 받고 있으며, roll과 roll사이에서는 철정압에 의한 주편 bulging 현상이 발생하고 주편의 표면은 인장응력을 받게 된다. 특히 연속주조 중 주편의 변형기구가 단순 탄소성 변형 이 아닌 creep에 의한 변형임을 고려할 때, 2차 냉각 지역에서 주편의 표면은 전술한 압축 및 인장변형 이 반복되는 저주기 고온 피로 환경을 거침을 알 수 있다. 본 연구에서는 탄소함량에 따른 주편의 bulging시의 크랙 발생에 미치는 저주기 고온 피로의 효과를 조사하였다. 또한, 용체화 처리 온도에서 시험 온도까지의 냉각 속도의 영향을 조사하기 위하여 1$^{\circ}C$/s 및 1$0^{\circ}C$/s로 냉각 속도를 변화시켜 열간 연성 곡선을 작성하였다. 본 연구에서 얻어진 결과는 다음과 같다. 저탄소강의 경우는 저주기 피로의 영향이 관찰되지 않았으며, 중탄소강의 경우, 저온에서는 저주기 피로로 인해 열간 연성이 증가하였으나, 고온에서는 변형유기 페라이트의 생성으로 인해 열간 연성 이 감소하였다. 고탄소강의 경우는 저주기 피로로 인하여 열간 연성이 모든 온도 구간에서 증가하였다. 또한 용체화 처리후 시험 온도까지의 냉각 속도가 감소함에 따라 열간 연성이 증가하였는데, 이는 입 계 석출물의 조대화로 인해 열간 연성이 증가하는 것으로 판단된다.

  • PDF

Covariance Structure Analysis on the Impact of Job Stress, Psychological Factors and Sleep Quality on Fatigue Symptoms among Fire Fighters (소방공무원의 직무스트레스, 사회심리적 요인 및 수면의 질이 피로수준에 미치는 영향에 대한 공분산 구조분석)

  • Lee, Hyun-Joo
    • Journal of Digital Contents Society
    • /
    • v.19 no.3
    • /
    • pp.489-496
    • /
    • 2018
  • This article is to examine the influence of occupational stress, socio-psychological factors and quality of sleep on fatigue symptoms from firefighters in fire service. The correlation coefficients were obtained by a tool of Pearson analysis, and covariance structure analysis was performed on the factors affecting the level of fatigue symptoms. This result suggests that the level of firefighters' fatigue symptoms in fire service. has a causal effect with occupational stress, socio-psychological factors and quality of sleep. Therefore, it is necessary to improve the work environment and to increase organizational support to deal with firefighters' fatigue in fire service.

Development of VR Prototype for Reducing Eye Fatigue (안구 피로 감소를 위한 VR 기기 프로토타입 개발)

  • Chae, Su-Hyeok;Kim, Geunmo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.21-23
    • /
    • 2019
  • This paper aims to develop a VR device prototype for reducing eye fatigue. As VR devices become popular, it is hoped that many cases of eye fatigue will be reported, and that the problems of VR devices will be corrected and repaired for a better future so that the fast speed and dynamic environment of 4th industrial revolution can be enjoyed with ease. In this paper, VR devices with a description of VR devices, eye fatigue related cases, time-out sensor for reducing eye fatigue, and eyeball massage functions were designed, and a VR device prototype was developed. These features can help reduce fatigue even if used for long periods of time by blocking electromagnetic waves harmful to the human body, and the future of VR could develop in the future.

  • PDF

Fatigue behavior of Cr-Mo-V steel at high temperature for turbines -Propagation characteristics of high cycle fatigue crack- (터빈용 Cr-Mo-V강의 고온 환경변화에 따른 피로거동-고사이클 피로균열의 전파특성-)

  • Song, Sam-Hong;Kang, Myung-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.11
    • /
    • pp.69-76
    • /
    • 1997
  • The rotating bending fatigue tests were performed using the specimens taken from Cr-Mo-V steel, widely sued in thermal power plant turbines, at various temperatures such as room temperature, 300 .deg. C, 425 .deg. C and 550 .deg. C. The characteristics of fatigue crack propagation were examined and analyzed by using fracture mechanics parameter. The plastic replica method was also applied in order to measure the crack length on the basis of serial observation of fatigue crack propagation behavior on the defected specimen surface. The fatigue crack propagation behavior of Cr-Mo-V steel was investigated within the frame work of elastic-plastic fracture mechanics. The propagation law of fatigue crack is obtained uniquely by using the term .sigma. $^{n}$ sub a/where .sigma. $_{a}$ is the service stress, a is the crack length and n is a constant. The values of constant n are nearly equal to 2.48, 2.60 and 8.61 at room temperature, 300 .deg. C and 425 .deg. C.

  • PDF

Characteristics of the Cyclic Hardening in Low Cycle Environmental Fatigue Test of CF8M Stainless Steel (CF8M 스테인리스 강 저주기 환경피로 실험의 주기적 변형률 경화 특성)

  • Jeong, Ill-Seok;Ha, Gak-Hyun;Kim, Tae-Ryong;Jeon, Hyun-Ik;Kim, Yeong-Sin
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.17-22
    • /
    • 2007
  • Low-cycle environmental fatigue tests of cast austenitic stainless steel CF8M at the condition of fatigue strain rate 0.04%/sec were conducted at the pressure and temperature, 15MPa, $315^{\circ}C$ of a operating pressurized water reactor. The used test rig was limited to install an extensometer at the gauge length of the cylindrical fatigue specimen inside the small autoclave. So the magnet type LVDT's were used to measure the fatigue displacement at the specimen shoulders inside the high temperature and high pressure water autoclave. However, the displacement and strain measured at the specimen shoulders is different from the one at the gauge length for the geometry and the cyclic strain hardening effect. FEM calculated the displacement and the strain of the gauge length from the data measured at the shoulders. Tensile test properties in elastic and plastic behavior of CF8M material were used in the FEM analysis. A series of low cycle fatigue tests simulating the cyclic strain hardening effect verified that the FEM calculation was well agreed with the simulated tests. The process and method developed in this study would be so useful to produce reliable environmental fatigue curves of CF8M stainless steel in pressurized water reactors.

  • PDF

Environmental Fatigue Evaluation of Top-Mounted In-Core Instrumentation Nozzle (상부 탑재형 노내계측기 노즐의 환경피로평가)

  • Yoon, Hyo-Sub;Kim, Jong-Min;Maeng, Cheol-Soo;Kim, Gee-Seok;Kim, Hyun-Min
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.3
    • /
    • pp.245-252
    • /
    • 2016
  • The development of Top-Mounted In-Core Instrumentation(TM-ICI) is an ongoing project to reduce the risk due to severe accidents by inserting the instrumentation into a reactor closure head instead of a reactor bottom head. As part of this project, environmental fatigue analyses for TM-ICI nozzle have been performed using two methods of NUREG/CR-6909 and Code Case N-761. TM-ICI nozzle is subjected to transient loads for level A, level B and test conditions that should be evaluated for a fatigue analysis. It is found that a cumulative usage factor considering reactor coolant environment for TM-ICI nozzle is evaluated as less than 1, which is ASME Code allowable criteria of a fatigue analysis.

Characteristics of the Cyclic Hardening in Low Cycle Environmental Fatigue Test of CF8M Stainless Steel (CF8M 스테인리스 강 저주기 환경피로 실험의 주기적 변형률 경화 특성)

  • Jeong, Il-Seok;Ha, Gak-Hyun;Kim, Tae-Ryong;Jeon, Hyun-Ik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.2
    • /
    • pp.177-185
    • /
    • 2008
  • Low-cycle environmental fatigue tests of cast austenitic stainless steel CF8M at the condition of fatigue strain rate 0.04%/sec were conducted at the pressure and temperature, 15MPa, $315^{\circ}C$ of a operating pressurized water reactor (PWR). The used test rig was limited to install an extensometer at the gauge length of the cylindrical fatigue specimen inside a small autoclave. So the magnet type LVDT#s were used to measure the fatigue displacement at the specimen shoulders inside the high temperature and high pressure water autoclave. However, the displacement and strain measured at the specimen shoulders is different from the one at the gauge length for the geometry and the cyclic strain hardening effect. Displacement of the fatigue specimen gauge length calculated by FEM (finite element method) used to modify the measured displacement and fatigue life at the shoulders. A series of low cycle fatigue life tests in air and PWR conditions simulating the cyclic strain hardening effect verified that the FEM modified fatigue life was well agreed with the simulating test results. The process and method developed in this study for the environmental fatigue test inside the small sized autoclave would be so useful to produce reliable environmental fatigue curves of CF8M stainless steel in pressurized water reactors.

Measuring Visual Fatigue of Glasses-free Interactive 3D System Under Various Viewing Conditions (다양한 시청환경에 따른 무안경식 interactive 3D 시스템의 시각피로도 측정)

  • Kim, Jung-Yul;Li, Hyung-Chul O.;Kim, ShinWoo
    • Journal of Broadcast Engineering
    • /
    • v.18 no.3
    • /
    • pp.425-434
    • /
    • 2013
  • Observers usually experience visual fatigue when they watch contents displayed on 3D display. There has been various research on visual fatigue incurred in stereoscopic displays that use 3D glasses, but relatively less studies have been done in the area of autostereoscopic displays. i3D system refers to interactive 3D system that makes it possible for users to interact with contents using their hands. Current research measured visual fatigue that users experience from i3D under various visual environments. We examined the effects of viewing distance, disparities and visual orientation on visual fatigue in i3D. The results indicated that visual fatigue decreased with longer distance and smaller disparity. Visual fatigue increased with angle when 3D fusion was unstable. In addition, there was an interaction effect between angle and distance in which visual fatigue increased with distance under stable 3D fusion but there was no difference in visual fatigue as a function of distance when 3D fusion was unstable. These results would be importantly used to develop autostereoscopic displays that minimize visual fatigue.

A Study on the Effects of Marine Accidents by Navigation Officers' Fatigue (항해사의 피로가 해양사고에 미치는 영향 평가에 관한 연구)

  • Cho, Jun-Young;Keum, Jong-Soo;Jang, Woon-Jae
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.16 no.2
    • /
    • pp.201-207
    • /
    • 2010
  • Recently, about 600 cases of marine accidents occur annually in Korea. According to many studies and analyses on occurrence of marine accidents, 70~80% of marine accidents were caused by human factors. Among the human factors, navigation officers' fatigue is very important factor. Although navigation officers' fatigue serves as an important role in marine accidents, there is no method to exactly examine the degree of officers' fatigue. Accordingly, this study analyzed human factors according to types of marine accidents and extracted important five factors affecting navigation officers' fatigue through the questionnaire survey by means of literatures and 5-point scale. In addition, evaluation factors of marine accident risks caused by fatigue factors were divided and structured by using ISM. Lastly, it found out the importance of each fatigue factor drawn by AHP and decided marine accidents that were most highly caused by navigation officers' fatigue in order. At the result, weights were high as sleep time 0.385, stress 0.302, health condition 0.139, rest time 0.099, alcohol and drug 0.074 in fatigue factors, and death and injury 0.328, collision 0.308, grounding 0.195, sinking 0.094, fire accident 0.075 in evaluation factors of marine accident risks. Therefore, the control plan to lower marine accident risks should be prepared on the basis of high weight factors.

Probabilistic Fatigue Life Evaluation of Steel Railway Bridges according to Live-Dead Loads Ratio (강철도교의 활하중-사하중 비에 따른 확률기반 피로수명 평가)

  • Lee, Sangmok;Lee, Young-Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.339-346
    • /
    • 2019
  • Various studies have been conducted to evaluate the probabilistic fatigue life of steel railway bridges, but many of them are based on a relatively simple model of crack propagation. The model assumes zero minimum stress and constant loading amplitude, which is not appropriate for the fatigue life evaluation of railway bridges. Thus, this study proposes a new probabilistic method employing an advanced crack propagation model that considers the live-dead load ratio for the fatigue life evaluation of steel railway bridges. In addition, by using the rainflow cycle counting algorithm, it can handle variable-amplitude loading, which is the most common loading pattern for railway bridges. To demonstrate the proposed method, it was applied to a numerical example of a steel railway bridge, and the fatigue lives of the major components and structural system were estimated. Furthermore, the effects of various ratios of live-dead loads on bridge fatigue life were examined through a parametric study. As a result, with the increasing live-dead stress ratio from 0 to 5/6, the fatigue lives can be reduced by approximately 30 years at both the component and system levels.