• Title/Summary/Keyword: 환경전과정평가

Search Result 222, Processing Time 0.023 seconds

Life Cycle Impact Assessment to Corn Field Appling Anaerobic and Aerobic Digestates Including Each Swine Waste Treatment System (돈분처리 시스템을 포함한 액비 시용에 따른 옥수수 재배과정에 대한 전과정 환경영향 평가)

  • Shin, Joung-Du;Lee, Sun-Il;Park, Woo-Kyun;Choi, Yong-Su;Na, Young-Eun;Park, Yoo-Sung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.22 no.2
    • /
    • pp.35-43
    • /
    • 2014
  • The application of the Life Cycle Impact Assessment (LCIA) methodology to analyze the environmental burden of appling the digestates to corn field including different swine waste treatment systems was investigated. The first part of LCA is an inventory of parameters used to emissions released due to the system under investigation. In the following step, the Life Cycle Impact Assessment, the inventory data were analyzed and aggregated in order to finally get one index representing the each environmental burden. Each corn field applied with the aerobic and anaerobic digestates including different swine waste treatment systems was used as an example for the life cycle impact analysis. With analyzing the agricultural environmental burden, it observed that the effect of corn field applied aerobic digestate including digestion system was 7.6 times higher at eutrophication effects, but global warming potential effect was 0.9 times less than its applied anaerobic digestate.

Life Cycle Assessment on the Reuse of Glass Bottles (유리병 재사용에 대한 전과정평가)

  • Kim, Hyung-Jin;Kwon, Young-Shik;Choi, Yoon-Geun;Chung, Chan-Kyo;Baek, Seung-Hyuk;Kim, Young-Woo
    • Clean Technology
    • /
    • v.15 no.3
    • /
    • pp.224-230
    • /
    • 2009
  • Life Cycle Assessment (LCA) has been studied on the reuse of glass bottles. The system boundary in this study encompassed from gate to gate such as production and transportation. A 360 mL volume of a glass bottle was selected as the functional unit. The environmental impact assessments was studied on 6 categories including abiotic resource depletion, acidification, eutrophication, global warming, ozone depletion, and photochemical oxidant creation. The results showed that the most significant impact categories were abiotic resource depletion (48.63%) and global warming (46.27%), and the rest categories revealed insignificant impacts. In the whole system, the chemicals used for the new bottle production revealed the major contribution to the environmental impacts (71.24%), followed by the use of electricity (16.74%) and transportation (11.8%). In addition, the environmental impact of sodium silicate to be put into the stage of the new bottle production was found to be 45.68%, causing severe influence on abiotic resource depletion and global warming.

The Economic Efficiency Assessment of Infrastructure considering Environmental Cost - A Case Study of Emergency Spillway for Korean Multipurpose Dam - (환경비용을 고려한 공공시설물의 환경경제성 평가 -국내 다목적댐 비상여수로 시설 사례연구 -)

  • Kwun, Suk-Hyun;Kim, Sang-Bum
    • Korean Journal of Construction Engineering and Management
    • /
    • v.8 no.3
    • /
    • pp.168-176
    • /
    • 2007
  • This study aims to provide useful information when making a decision for the environmental and economic efficiency assessment of infrastructure, based on Life Cycle Assessment(LCA). It estimates environmental cost on environmental pollutants that are possible to happen by locations and by types of emergency spillway for korean multipurpose dam, which is selected as a study case. For this purpose, this study examines the theories of LCA and Contingent Valuation Method(CVM) and suggests an analysis model of environmental cost. To apply the suggested analysis model of environmental cost for infrastructure to the case study of emergency spillway at the multipurpose dam, this study calculates environmental load on environmental pollutants that generate during life cycle, converts it to a cost to predict environmental cost, evaluates environmental economy of emergency spillway by the estimated result, and draws the optimum alternative that is environmental-friendly and economic.

Influence of Fly Ash on Life-Cycle Environmental Impact of Concrete (플라이애시가 콘크리트의 전과정 환경영향에 미치는 효과)

  • Jung, Yeon-Back;Yang, Keun-Hyeok;Choi, Dong-Uk
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.6
    • /
    • pp.515-522
    • /
    • 2014
  • In order to quantitatively evaluate the effect of fly ash (FA) as partial replacement of cement on the life-cycle environmental impact of concrete, a comprehensive database including 4023 laboratory mixes and 2120 plant mixes was analyzed. The environmental loads on the life-cycle assessment were quantitatively converted into environmental impact indicators through categorization, characterization, normalization and weighting process. The life-cycle environmental impacts of concrete could be classified into three categories including global warming, photochemical oxidant creation and abiotic resource depletion. Furthermore, these environmental impacts of concrete was decreased with the increase of the replacement level of FA and governed by the unit content of ordinary portland cement (OPC). As a result, simple equations to assess the environmental impact indicators could be formulated as a function of the unit content of binder and the replacement level of FA.

Environmental analysis on Waste Catalyst Recycling Technology using Life Cycle Assessment (전과정평가를 통한 폐촉매 재활용 기술의 환경성 분석)

  • Ahn, Joong Woo;Pak, Jong-Jin
    • Resources Recycling
    • /
    • v.27 no.1
    • /
    • pp.64-73
    • /
    • 2018
  • This study aims to analysis the environmental impact on waste catalyst recycling technology using entire life cycle assessment. Environmental impacts consist of the five categories of impacts: global warming, resource depletion, acidification, eutrophication, and photochemical oxide production. The waste catalyst recycling presently have a GWP 3.53 ton $CO_2$ equivalent/ton, a ADP 0.017 ton Sb equivalent/ton, a AP 0.051 $SO_2$ equivalent/ton, a EP 0.0092 $PO{_4}^{3-}$ equivalent/ton, a 0.0019 ton $C_2H_4$ equivalent/ton. The smelting reduction process is the greatest contributor to all categories of environmental impacts in waste catalyst recycling. Electricity used in the smelting reduction process is the major contributor of all impact categories.

Development of Green Template for Building Life Cycle Assessment Using BIM (건축물 LCA를 위한 BIM 친환경 템플릿 개발에 관한 연구)

  • Lee, Sung Woo;Tae, Sung Ho;Kim, Tae Hyoung;Roh, Seung Jun
    • Spatial Information Research
    • /
    • v.23 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • The purpose of this study is to develope BIM Template according to major building material for efficiently and quantitatively evaluating greenhouse gas emission at the design stage. Template users consider various environmental impacts without connecting simulation tools for analyzing environmental impact and Template users who have no prior knowledge can Life Cycle Assessment by using The green template. For this study, Database which was reflected in template was constructed considering environmental performance. and 6 kinds of environmental impact categories and PPS standard construction codes were analyzed by major building material derived from literature. Based on this analyzed data, The major Material Family according to the main building material was developed. When users conduct modeling by utilizing Family established, evaluating result can be confirmed in the Revit BIM Modeling program by using the schedule function of the Revit. Users through the modeling, the decision-making environment performance possible. In addition, we propose to create a guideline for the steps required to build an additional established family.

The Development of Korean Life Cycle Impact Assessment Index Based on a Damage Oriented Modeling (한국형 피해산정형 전과정 영향평가 지표 개발)

  • Park, Pil-Ju;Kim, Mann-Young
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.5
    • /
    • pp.499-508
    • /
    • 2010
  • This study proposed a life cycle impact assessment index that can indicate the environment-related information of the product in monetary value such that the national geographical, environmental, and social features are fully reflected based on a damage-oriented model. First, the estimation process was classified into characterization, damage assessment, and integration stages considering the six biggest impact categories: resource depletion, global warming, ozone depletion, acidification, eutrophication, and photochemical oxidant creation. Moreover, this study came up with the 16 category endpoints related to the 6 impact categories, and the damage function, to the 4 largest safeguard subjects. The integration indices of finally identified impact categories were KRW 21.8/kg Sb, KRW 6.19/kg$CO_2$, KRW 53,000/kg CFC-11, KRW 13,100/kg $SO_2$, KRW 2,310/kg ${PO_4}^{3-}$, and KRW 3,030/kg $C_2H_4$. Using the results of this research, environmental impacts based on the environmental load generated throughout the entire life cycle of a product can serve as a single index in monetary value; thus enhancing understanding and utilization of the results of life cycle impact assessments.

Evaluations of Life Cycle Assessment on Indium-Tin-Oxide Electrochemical Recycling Process (디스플레이 투명전극용 인듐-주석-산화물의 전기화학적 재활용 공정에 관한 전과정 평가)

  • Kim, Raymund K.I.;Lee, Na-Ri;Lee, Soo-Sun;Lee, Young-Sang;Hong, Sung-Jei;Son, Young-Keun;Hong, Tae-Whan
    • Clean Technology
    • /
    • v.19 no.4
    • /
    • pp.388-392
    • /
    • 2013
  • Iindium-tin-oxide (ITO) material was had to use in display application as transparent electrode. However it would be problems comes up, the depletion of indium, tin and energy consumption of production process. Therefore recently trend was demanded alternative ITO material and recycling/reused ITO. In this conditions, the environmental impact have to express correct value about recycling/reused ITO process. The life cycle assessment was valuable method in this process. Thus first step was carried out separating in/out put (material) sources and then, exactive data base (DB) was applied. The result of environment impact was calculated by affect categories and recycling rate was set to 34% (This value was measured in previous project). The rate (g) of ITO material was calculated by chemical equivalent. In result, environmental impact were revealed acidification potential and abiotic depletion and if do not recycle/reuse ITO, $ 476 per 1 ton waste in land.

Development of a Simplified Model for Estimating CO2 Emissions: Focused on Asphalt Pavement (CO2 배출량 추정을 위한 간략 모델 개발: 아스팔트 포장을 중심으로)

  • Kim, Kyu-Yeon;Kim, Sung-Keun
    • Land and Housing Review
    • /
    • v.12 no.2
    • /
    • pp.109-120
    • /
    • 2021
  • Global warming due to increased carbon dioxide is perceived as one of the factors threatening the future. Efforts are being made to reduce carbon dioxide emissions in each industry around the world. In particular, environmental loads and impacts during the life cycle of SOC structures and buildings have been quantitatively assessed through a quantitative method called Life Cycle Assessment (LCA). However, the construction sector has gone through difficulty in quantitative assessment for several reasons: 1) LCI DB is not fully established; 2) the life cycle is very long; 3) the building structures are unique. Therefore, it takes enormous effort and time to carry out LCA. Rather than estimating carbon emissions with accuracy, this study aims to present a simplified estimation model that allows owners or designers to easily estimate carbon dioxide emissions with little effort, given that rapid and rough decisions regarding environmental load reduction are to be made. This study performs the LCA using data from 25 road construction projects across the country, followed by multiple regression analyses to derive a simplified carbon estimation model (SLCA). The study also carries out a comparative analysis with values estimated by performing a typical LCA. The comparison analysis shows an error rate of less than 5% for 16 road projects.

Environmental and economic life cycle analysis of hydrogen as Transportation fuels (자동차 연료로서 수소의 전과정 환경성/경제성 분석)

  • Lee, Ji-Yong;Cha, Kyung-Hoon;Yu, Moo-Sang;Lee, Soo-Yeon;Hur, Tak;Lim, Tae-Won
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.543-547
    • /
    • 2007
  • 화석연료의 점진적 고갈과 그 사용에 따른 지구온난화 그리고 에너지 안보를 해결하기 위하여 세계 각국에서는 대체에너지 개발에 노력을 기울이고 있다. 그 중 수소는 가장 주목받고 있는 대체에너지 원으로 현재 기술개발을 통하여 상업화 시기를 앞당기려고 하고 있다. 다시 말해서, 현재는 수소에너지 시대의 진입 시점이라고 할 수 있다. 이러한 수소는 다양한 소스에서 생산될 수 있으며, 수송연료로 연소 시, 유해 배출물이 거의 나오지 않는 장점이 있다. 그러나 수소는 그 생산 경로에 따라서, 다양한 환경성 및 경제성을 나타낼 수 있다. 본 연구에서는 국내 수소 생산 방식으로 개발/상업화 되어 있는 NGSR, Naphtha SR, WE에 대하여, LCA와 LCCA 방법을 통하여, 수소 경로 전반 즉, 원료채취에서부터 자동차로 주행하였을 때까지를 포함하여 각 대상 수소 경로의 환경성과 경제성을 평가하였다. LCA와 LCCA 결과를 살펴보면, Naphtha SR 및 NGSR 수소 경로에서는 지구온난화와 화석자원 소모 부문 모두 기존연료와 비교해보았을 때 개선효과가 뚜렷하게 나타났으나, WE 수소 경로에서는 오히려 환경부하가 증가되는 것으로 나타났다. 또한 비용적인 측면에서 살펴보면, 수소에 가솔린과 동일한 연료 세율을 부과하더라도 수소가 가솔린에 비하여 주행 시 연료 비용이 저감되어 연료로서 가격경쟁력을 확보하였으며, 연료세를 부과하지 않는 다면, Naphtha SR로 생산하여 유통한 수소가 수송연료로써 가장 비용 효율적인 것으로 나타났다.

  • PDF