• Title/Summary/Keyword: 환경전과정평가

Search Result 222, Processing Time 0.023 seconds

Development of Eco-Efficiency Indicators for Yeosu Industrial Park (여수산업단지의 생태효율성지표 개발에 관한 연구)

  • Kim, Jung-In;Yun, Chang-Han;Yoon, Hyung-Sun
    • Clean Technology
    • /
    • v.16 no.3
    • /
    • pp.229-237
    • /
    • 2010
  • The industrial ecology indicators(IEI) for Yeosu Industrial Park were developed using eco-efficiency indicator(EEI). The key factors for the creation of IEI were two parts. One part is the value of the products which is selected as the total production value, the amount of ethylene production, the amount of light oil production instead of the total sales volume for Yeosu Industrial Park, since the currency exchange and the price of raw materials varied every year. The other part is the environmental burden. The electric consumption, the industrial water consumption, and the amount of discharged waste water are all officially opened to the public, were used in the calculation. Based on the value for the year of 2004, the IEI value for 2006 became worse to 0.954, but, was expected to be 1.153, a 15% improvement, for 2015 if the current EIP project is successfully performed.

Evaluation of Environment Imapcts on TiN-ZrCo Composites Hydrogen Seperation by Material Life Cycle Assessment (TiN-ZrCo 복합수소 분리막의 제조와 환경성 평가)

  • KIM, MINGYEOM;AHN, JOONGWOO;HONG, TAEWHAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.6
    • /
    • pp.627-634
    • /
    • 2017
  • In this study, Material life cycle evaluation was performed to analyze the environmental impact characteristics of TiN-ZrCo membrane manufacturting process. Gabi was used as software. The Eco-Indicator 99 methodology was used to evaluate the 11 impact categories and the 10 impact categories using the CML 2001 methodology. Precursor TiN was synthesized by sol-gel method and zirconium was coated by ball mill method. The metallurgical, physical and thermodynamic characteristics of the membranes were analyzed by using Scanning Electron Microscope (SEM), Energy Dispersive X-ray (EDS), X-ray Diffraction (XRD), Thermo Gravimetry/Differential Thermal Analysis (TG/DTA), Brunauer, Emmett, Teller (BET) and Gas Chromatograph System (GP). As a result of the characterization and normalization, the environmental impacts of each category of impacts were GWP 100 years with the highest environmental impact of 99.9%.

A study on the proposal of environmental capacity criterion method for windows system in buildings (창호시스템의 환경성능평가기법 정립에 관한 연구)

  • Choi, Doo-Sung;Kim, Eun-Gyu;Cho, Kyun-Hyong
    • Journal of the Korean Solar Energy Society
    • /
    • v.24 no.3
    • /
    • pp.101-109
    • /
    • 2004
  • This research investigates the life-cycle energy consumption of the windows used for the building's exterior cladding, and its environmental potential aspects by utilizing the LCA. The research scope has taken account of the entire life-cycle of the windows from the extraction of raw materials to its disposal, of which given sample building type is an apartment building. Results gained from the LCA of the windows as one of the steps in analysis reflects the current global interest and analysis trend towards the world's environmental issue on all fields of industry including the architectural industry, of which its newly established standards of architectural windows can further promote more environmentally sustainable factor compared to the previous analysis (focused more on energy efficiency assessment of the use stage).

Life Cycle Assessment and Eco-efficiency Analysis for the Resource-circulation Network of Waste Heat Generated from Industrial Process (공정폐열의 자원순환 네트워크 구성을 위한 전과정 평가 및 생태효율성 분석)

  • Shin, Choon-Hwan;Park, Do-Hyun;Kim, Ji-Won
    • Journal of Environmental Science International
    • /
    • v.22 no.3
    • /
    • pp.281-289
    • /
    • 2013
  • For the purpose of evaluating the eco-efficiency(EE) on surplus heat generated from industrial process, techniques of life cycle assessment are adopted in this study. Because it can be indicated both environmental impacts and economic benefits, EE is well known as a useful tool for symbiosis network on the sustainable development of new projects and businesses. To evaluate environmental impacts, the categories were divided into two areas of resource depletion and global warming potential. It can be seen that environmental impact increased a little but much higher economic benefit on the company, environmental performance and economic value were improved on the apartment by the district heating, respectively. In result, eco-industrial park(EIP) project on surplus heat should be found sustainable new business because the EE was in the area of fully positively eco-efficiency and, moreover resource depletion was taken place than the reduction of greenhouse gas.

Method of Introduce for International Standards for Water Footprint Calculations (물발자국의 국제표준화와 국내 도입 방안)

  • Park, Sung Je;Lee, Young Kune;Ryu, Si Saeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.267-267
    • /
    • 2015
  • 가상수의 흐름을 보다 가시적으로 파악하기 위하여 대두된 개념이 물발자국(water footprint)이다. 이는 흔히 사용되고 있는 생태발자국(ecological footprint)이나 탄소발자국(carbon footprint)에 착안하여 도입된 개념으로 한 국가의 물발자국은 직 간접적으로 물건이나 재화를 생산하는데 국민이 소비하는 물의 총량으로 정의된다. 물발자국을 내적/외적으로 단순히 구분하여 산정하는 방식이 진화하여 1단위의 생산에서 유통 및 서비스까지 확대하여 그 전 과정을 모두 포함하는 물발자국 산정방식이 도입된 것은 최근의 일이다. 직접적인 물사용과 간접적인 물사용을 구분하여 물발자국을 산정하고, 그 위에 물의 성질에 따라 green water, blue water, 그리고 grey water로 각각 개념을 상세화하여 물발자국을 산정하는 방안이 도입되었다. 2009년 물발자국 산정의 표준화를 위한 스위스의 제안이 ISO에 제출되었고, 각 국가들에 의한 투표가 진행되어 2010년 물발자국 국제표준안이 채택되었다. 본 연구는 이러한 국제기구에 의한 일련의 국제표준화 작업을 대상으로 진행되었다. 2014년 ISO/TC 207 국제총회가 개최되어 환경경영시스템(SC1), 환경감사(SC2), 환경 라벨링(SC3), 환경성과평가(SC4), 전과정평가(SC5), 온실가스관리(SC7)의 6개 분과위원회(Sub-Committees)가 구성되어 세부논의가 진행되었으며, 이러한 과정을 분석함으로서 물발자국 국제표준(ISO 14046)과 향후 우리나라의 대응방안을 고찰하였다. 물발자국 국제표준(ISO 14046) 제정을 통해 물발자국의 필요성 및 중요성에 대한 국가 간 합의는 도출되었으나, 적용시기 및 세부적인 방법론 등에 대한 이견이 여전히 존재하고 있다. ISO 14046의 실질적 적용에 필요한 세부사항과 관련된 기술보고서 작업초안(WD 14073)은 작업반(SC5/WG8)에서 진행되고 있다. 그러나 물발자국 국제표준이 국가 간 무역장벽이나 특정국의 진입을 막는 수단으로 사용될 수 있는 점 등 실질적으로 국제표준의 도입에 따른 문제점 역시 존재한다. 본 연구에서 제시된 국제표준의 도입 방안을 통하여 가상수무역의 국제적 선점효과를 기대함과 동시에 수자원의 유효한 활용을 기대할 수 있을 것이다.

  • PDF

Environmental Impact Assessment of Agricultural Systems Using the Life Cycle Assessment (전과정평가 도입을 통한 농업환경영향 평가)

  • Shim, Kyo-Moon;Jeong, Ji-Sun;So, Kyu-Ho;Lim, Song-Tak;Roh, Kee-An;Kim, Gun-Yeob;Jeong, Hyun-Cheol;Lee, Deog-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.2
    • /
    • pp.237-241
    • /
    • 2010
  • Many policies have been implemented to mitigate the greenhouse gases in atmosphere overall of sectors. With considering the distinct characteristics of the food security, agricultural sector is no exception to this situation. To this regard, total amount of carbon which is emitted through all of the agricultural production process is calculated, and being based on this result, the demand for the introduction of agricultural production system with low carbon has been rising. Case studies on the application of life cycle assessment (LCA) technique to agricultural sector are found in many countries. For example, life cycle inventory (LCI) data bases of crop, farm infrastructure, fertilizer, farm machinery, and etc., have been constructed and provided by Ecoinvent (Swiss centre for life cycle inventories) of Swiss. In Japan, Top-down typed LCA methodology for agriculture is developed based on the inter-industry analysis, and is evaluated according to the productive method of crop. On the other hand, environmental impact assessment of agricultural system using LCA in Korea is just in the beginning stages. So it is required to assess environmental impact on agricultural fertilizer and pesticide, and to develop their flow modeling, and methodology of LCA of agricultural sector. Environmental impact assessment on agricultural materials, machinery, and infrastructure will also be carried out.

Estimation of Carbon Emission and Application of LCA (Life Cycle Assessment) from Barely (Hordeum vulgare L.) Production System (보리의 생산과정에서 발생하는 탄소배출량 산정 및 전과정평가 적용)

  • So, Kyu-Ho;Park, Jung-Ah;Lee, Gil-Zae;Ryu, Jong-Hee;Shim, Kyo-Moon;Roh, Kee-An
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.5
    • /
    • pp.722-727
    • /
    • 2010
  • This study was conducted to estimate the carbon footprint and to establish the database of the LCI (Life Cycle Inventory) for barely cultivation system. Barley production system was separated into the naked barley, the hulled barley and the two-rowed barley according to type of barley species. Based on collecting the data for operating LCI, it was shown that input of fertilizer was the highest value of 9.52E-01 kg $kg^{-1}$ for two-rowed braley. For LCI analysis focussed on the greenhouse gas (GHG), it was observed that carbon footprint were 1.25E+00 kg $CO_2$-eq. $kg^{-1}$ naked braley, 1.09E+00 kg $CO_2$-eq. $kg^{-1}$ hulled braley and 1.71E+00 $CO_2$-eq. $kg^{-1}$ two-rowed barley; especially two-rowed barley cultivation system had highest emission value as 1.09E+00 kg $CO_2$ $kg^{-1}$ barley. It might be due to emit from mainly fertilizer production for barley cultivation. Also $N_2O$ was emitted at 7.55E-04 kg $N_2O\;kg^{-1}$ barley as highest value from hulled barley cultivation system because of high N fertilizer input. The result of life cycle impcat assessment (LCIA), it was observed that most of carbon emission from barely cultivation system was mainly attributed to fertilizer production and cropping unit. Characterization value of GWP was 1.25E+00 (naked barley), 1.09E+00 (hulled barley) and 1.71E+00 (two-rowed barely) kg $CO_2$-eq. $kg^{-1}$, respectively.

Estimation of Carbon Emission and LCA (Life Cycle Assessment) From Sweetpotato (Ipomoea batatas L.) Production System (고구마의 생산과정에서 발생하는 탄소배출량 산정 및 전과정평가)

  • So, Kyu-Ho;Lee, Gil-Zae;Kim, Gun-Yeob;Jeong, Hyun-Cheol;Ryu, Jong-Hee;Park, Jung-Ah;Lee, Deog-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.892-897
    • /
    • 2010
  • LCA (Life Cycle assessment) was carried out to estimate on carbon footprint and to establish of LCI (Life Cycle Inventory) database of sweetpotato production system. Based on collecting the data for operating LCI, it was shown that input of organic fertilizer was value of 3.26E-01 kg $kg^{-1}$ and it of mineral fertilizer was 1.02E-01 kg $kg^{-1}$ for sweetpotato production. It was the highest value among input for sweetpotato production. And direct field emission was 2.47E-02 kg $kg^{-1}$ during sweetpotato cropping. The result of LCI analysis focussed on greenhouse gas (GHG) was showed that carbon footprint was 4.05E-01 kg $CO_2$-eq. $kg^{-1}$ sweetpotato. Especially $CO_2$ for 71% of the GHG emission and the value was 2.88E-01 kg $CO_2$-eq. $kg^{-1}$ sweetpotato. Of the GHG emission $CH_4$, and $N_2O$ were estimated to be 18% and 11%, respectively. It might be due to emit from mainly fertilizer production (32%) and sweetpotato cultivation (28%) for sweetpotato production system. $N_2O$ emitted from sweetpotato cultivation for 90% of the GHG emission. With LCIA (Life Cycle Impact Assessment) for sweetpotato production system, it was observed that the process of fertilizer production might be contributed to approximately 90% of GWP (global warming potential). Characterization value of GWP and POCP were 4.05E-01 $CO_2$-eq. $kg^{-1}$ and 5.08E-05 kg $C_2H_4$-eq. $kg^{-1}$, respectively.

Estimation of Carbon Emission and LCA (Life Cycle Assessment) from Pepper (Capsicum annuum L.) Production System (고추의 생산과정에서 발생하는 탄소배출량 산정 및 전과정평가)

  • So, Kyu-Ho;Park, Jung-Ah;Huh, Jin-Ho;Shim, Kyo-Moon;Ryu, Jong-Hee;Kim, Gun-Yeob;Jeong, Hyun-Cheol;Lee, Deog-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.904-910
    • /
    • 2010
  • LCA (Life Cycle Assessment) carried out to estimate carbon footprint and to establish of LCI (Life Cycle Inventory) database of pepper production system. Pepper production system was categorized the field cropping (redpepper) and the greenhouse cropping (greenpepper) according to pepper cropping type. The results of collecting data for establishing LCI D/B showed that input of fertilizer for redpepper production was more than that for greenpepper production system. The value of fertilizer input was 2.55E+00 kg $kg^{-1}$ redpepper and 7.74E-01 kg $kg^{-1}$ greenpepper. Amount of pesticide input were 5.38E-03 kg $kg^{-1}$ redpepper and 2.98E-04 kg $kg^{-1}$ greenpepper. The value of field direct emission ($CO_2$, $CH_4$, $N_2O$) were 5.84E-01 kg $kg^{-1}$ redpepper and 2.81E+00 greenpepper, respectively. The result of LCI analysis focussed on the greenhouse gas (GHG), it was observed that the values of carbon footprint were 4.13E+00 kg $CO_2$-eq. $kg^{-1}$ for redpepper and 4.70E+00 kg $CO_2$-eq. $kg^{-1}$ for greenpepper; especially for 90% and 6% of $CO_2$ emission from fertilizer and pepper production, respectively. $N_2O$ was emitted from the process of N fertilizer production (76%) and pepper production (23%). The emission value of $CO_2$ from greenhouse production was more higher than it of field production system. The result of LCIA (Life Cycle Impact Assessment) was showed that characterization of values of GWP (Global Warming Potential) were 4.13E+00 kg $CO_2$-eq. $kg^{-1}$ for field production system and 4.70E+00 kg $CO_2$-eq. $kg^{-1}$ for greenhouse production system. It was observed that the process of fertilizer production might be contributed to approximately 52% for redpepper production system and 48% for greenpepper production system of GWP.

A Study on the Evaluation Method of Close-to-Nature Stream Improvement Works (자연 친화적인 하천 정비사업의 평가방법에 관한 연구)

  • Kim, Seok-Gyu;Kim, Chul
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.7
    • /
    • pp.503-510
    • /
    • 2007
  • In the area of such a nature-friendly stream improvement, it is not established yet which engineering method is suitable for stream environment, due to lack of technology. Therefore, although nature-friendly stream improvement was done with expensive engineering method, the effect has not been fully confirmed, which results from the absence of overall valuation tool of stream improvement. In this regard, it is necessary to develop and apply comprehensive and diverse valuation methods covering stream functions to the analysis of stream improvement. In this study, we collected data from years' of monitoring on the Gyeongcheon river, which is located in Sunchang-eup, Jeollabuk-do and recently underwent an nature-friendly stream improvement work. Based on the data, we developed a series of valuation methods such as stream naturalness evaluation, life cycle evaluation, amenity evaluation, and economic benefit analysis to consider the environmental function of stream from a comprehensive perspective. Stream naturalness evaluation is a quantitative analysis of how natural a stream is, and includes additional valuation items such as ecosystem and water quality for the purpose of overall valuation, unlike existing research focusing on physical elements and structural characteristics of a stream. We developed a method of stream valuation with life cycle assessment to river reorganization project. Amenity evaluation method was developed as a means to analyze residents' satisfaction with stream improvement through questionnaires. Economic benefit analysis was developed as a means to determine the attributes of environmental water supply, ecosystem, river maintenance, and water quality and predict economic benefits using contingent valuation method (CVM) and multi-attribute utility analysis (MAUA) method in order to analyze economic benefits brought in by stream improvement. It is considered that the four methods developed in this study make possible to conduct an overall and quantitative analysis of stream improvement.