• Title/Summary/Keyword: 환경성능분석

Search Result 6,055, Processing Time 0.029 seconds

Developmental Plan of Man-Overboard Alert Devices of Small Fishing Vessels: A Study (소형어선의 선외추락 경보장치 개발 방안 연구)

  • Kim, Jae-Won;Kim, Byung-Ok;Lim, Jung-Gyun;Lee, Ju-Han;Yim, Jea-Hong;Park, Dong-Kook
    • Journal of Navigation and Port Research
    • /
    • v.42 no.4
    • /
    • pp.245-252
    • /
    • 2018
  • A method of transmitting an alert signal in case of man-overboard (MOB) systems in a small fishing vessel navigating within coastal area is being operated as VHF-DSC equipment via a distress alert button and V-P ass Equipment via alert button or beacon separation. However, a small fishing vessel with a couple of crews on board is an inappropriate way to alert a man-overboard condition. However, internationally, MOB equipment using VHF-DSC, AIS, and Bluetooth technologies is used to transmit alert signals directly to the mother ship and other radio stations. In order to analyze the performance and technology of the MOB equipment operating in foreign countries, it was confirmed that the alarm signal can be received within a maximum of one nautical mile when the MOB device is on the water surface. An MOB device that meets domestic conditions needs to send an alarm signal to a station within the VHF communication range. However, in order to reduce the false alert signal, it is most appropriate to operate the VHF-DSC radio equipment installed on the ship remotely. Analysis of various technologies connecting the MOB and the VHF-DSC revealed that the Bluetooth system has advantages such as device miniaturization. When an emergency signal is transmitted from the MOB device, it can be received by a dedicated receiver and recognized through an external input terminal of the VHF-DSC equipment generating its own alarm. If the emergency situation cannot be processed at the mother ship, a distress alert is sent to all radio stations via VHF-DSC for response under emergencies faced by small fishing vessels.

The Study On Quality Control of Magnetic Resonance Imaging System (자기공명영상장치의 정도관리에 관한 연구)

  • Jeong, Cheon-Soo;Lim, Cheong-Hwan
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.6
    • /
    • pp.178-186
    • /
    • 2009
  • The quality control is needed to ensure the accuracy of medical information and achieved by evaluating the performance of and maintaining the system and practicing various measurements and evaluations. The Korean Institute for Accreditation of Medical Image, therefore, have held educational program for quality control of special medical equipments. The major of programs participants, however, are radiology specialists with only small number of radiological technologists from some hospitals, furthermore, the follow-up education and the share of information between participants and non-participants are insufficient in general, thus, the knowledge level of radiological technologists, regardless of their participation, is relatively low. This study carried out the questionnaire research for the 500 radiological technologists registered in Korean Society of MRI Technology, on the basis of 2008, and performed analysis for five months from May to Oct., 2008. The questionnaires were delivered by post to each radiological technologists and the response rate was 36%(n=180). The results of this revealed that the 86.7% of respondents felt the necessity of inspection on quality management, while only the 27.8% completed the educational program for manager of special medical equipment. and only the half(53.9%) had the knowledge about inspection on quality management. The completion of educational program had no correlations with sex, age, size of occupying hospital, the number of radiological technologists in occupying site and MRI laboratory, career year of general radiologist and in MRI laboratory, and the presence of biomedical engineering department in occupying hospital. The 78.0% of participants at the educational program for quality management held by the Korean Institute for Accreditation of Medical Image had the knowledge about inspection on quality management(p<.05) whereas the 43.9% of the hospitals held such program and the 54.4% of radiological technologists from those hospitals had related knowledge, which indicated that such programs held by hospitals had not effects on the knowledge level of radiological technologists. This indicates also that the contents, methods, and other conditional factors of educational programs are important for the outcome of them.

Effects of Elevated Temperature after the Booting Stage on Physiological Characteristics and Grain Development in Wheat (밀에서 출수 후 잎의 생리적 특성 및 종실 생장에 대한 수잉기 이후 고온의 효과)

  • Song, Ki Eun;Choi, Jae Eun;Jung, Jae Gyeong;Ko, Jong Han;Lee, Kyung Do;Shim, Sang-In
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.66 no.4
    • /
    • pp.307-317
    • /
    • 2021
  • In recent years, global warming has led to frequent climate change-related problems, and elevated temperatures, among adverse climatic factors, represent a critical problem negatively affecting crop growth and yield. In this context, the present study examined the physiological traits of wheat plants grown under high temperatures. Specifically, the effects of elevated temperatures on seed development after heading were evaluated, and the vegetation indices of different organs were assessed using hyperspectral analysis. Among physiological traits, leaf greenness and OJIP parameters were higher in the high-temperature treatment than in the control treatment. Similarly, the leaf photosynthetic rate during seed development was higher in the high-temperature treatment than in the control treatment. Moreover, temperature by organ was higher in the high-temperature treatment than in the control treatment; consequently, the leaf transpiration rate and stomatal conductance were higher in the control treatment than in the high-temperature treatment. On all measuring dates, the weight of spikes and seeds corresponding to the sink organs was greater in the high-temperature treatment than in the control treatment. Additionally, the seed growth rate was higher in the high-temperature treatment than in the control treatment 14 days after heading, which may be attributed to the higher redistribution of photosynthates at the early stage of seed development in the former. In hyperspectral analysis, the vegetation indices related to leaf chlorophyll content and nitrogen state were higher in the high-temperature treatment than in the control treatment after heading. Our results suggest that elevated temperatures after the booting stage positively affect wheat growth and yield.

Behavior Analysis of Concrete Structure under Blast Loading : (I) Experiment Procedures (폭발하중을 받는 콘크리트 구조물의 실험적 거동분석 : (I) 실험수행절차)

  • Yi, Na Hyun;Kim, Sung Bae;Kim, Jang-Ho Jay;Choi, Jong Kwon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5A
    • /
    • pp.557-564
    • /
    • 2009
  • In recent years, there have been numerous explosion-related accidents due to military and terrorist activities. Such incidents caused not only damages to structures but also human casualties, especially in urban areas. To protect structures and save human lives against explosion accidents, better understanding of the explosion effect on structures is needed. In an explosion, the blast overpressure is applied to concrete structures as an impulsive load of extremely short duration with very high pressure and heat. Generally, concrete is known to have a relatively high blast resistance compared to other construction materials. However, information and test results related to the blast experiment of internal and external have been limited due to military and national security reasons. Therefore, in this paper, to evaluate blast effect on reinforced have concrete structure and its protective performance, blast tests are carried out with $1.0m{\times}1.0m{\times}150mm$ reinforce concrete slab structure at the Agency for Defence Development. The standoff blast distance is 1.5 m and the preliminary tests consists with TNT 9 lbs and TNT 35 lbs and the main tests used ANFO 35 lbs. It is the first ever blast experiment for nonmilitary purposes domestically. In this paper, based on the basic experiment procedure and measurement details for acquiring structural behavior data, the blast experimental measurement system and procedure are established details. The procedure of blast experiments are based on the established measurement system which consists of sensor, signal conditioner, DAQ system, software. It can be used as basic research references for related research areas, which include protective design and effective behavior measurements of structure under blast loading.

End to End Model and Delay Performance for V2X in 5G (5G에서 V2X를 위한 End to End 모델 및 지연 성능 평가)

  • Bae, Kyoung Yul;Lee, Hong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.1
    • /
    • pp.107-118
    • /
    • 2016
  • The advent of 5G mobile communications, which is expected in 2020, will provide many services such as Internet of Things (IoT) and vehicle-to-infra/vehicle/nomadic (V2X) communication. There are many requirements to realizing these services: reduced latency, high data rate and reliability, and real-time service. In particular, a high level of reliability and delay sensitivity with an increased data rate are very important for M2M, IoT, and Factory 4.0. Around the world, 5G standardization organizations have considered these services and grouped them to finally derive the technical requirements and service scenarios. The first scenario is broadcast services that use a high data rate for multiple cases of sporting events or emergencies. The second scenario is as support for e-Health, car reliability, etc.; the third scenario is related to VR games with delay sensitivity and real-time techniques. Recently, these groups have been forming agreements on the requirements for such scenarios and the target level. Various techniques are being studied to satisfy such requirements and are being discussed in the context of software-defined networking (SDN) as the next-generation network architecture. SDN is being used to standardize ONF and basically refers to a structure that separates signals for the control plane from the packets for the data plane. One of the best examples for low latency and high reliability is an intelligent traffic system (ITS) using V2X. Because a car passes a small cell of the 5G network very rapidly, the messages to be delivered in the event of an emergency have to be transported in a very short time. This is a typical example requiring high delay sensitivity. 5G has to support a high reliability and delay sensitivity requirements for V2X in the field of traffic control. For these reasons, V2X is a major application of critical delay. V2X (vehicle-to-infra/vehicle/nomadic) represents all types of communication methods applicable to road and vehicles. It refers to a connected or networked vehicle. V2X can be divided into three kinds of communications. First is the communication between a vehicle and infrastructure (vehicle-to-infrastructure; V2I). Second is the communication between a vehicle and another vehicle (vehicle-to-vehicle; V2V). Third is the communication between a vehicle and mobile equipment (vehicle-to-nomadic devices; V2N). This will be added in the future in various fields. Because the SDN structure is under consideration as the next-generation network architecture, the SDN architecture is significant. However, the centralized architecture of SDN can be considered as an unfavorable structure for delay-sensitive services because a centralized architecture is needed to communicate with many nodes and provide processing power. Therefore, in the case of emergency V2X communications, delay-related control functions require a tree supporting structure. For such a scenario, the architecture of the network processing the vehicle information is a major variable affecting delay. Because it is difficult to meet the desired level of delay sensitivity with a typical fully centralized SDN structure, research on the optimal size of an SDN for processing information is needed. This study examined the SDN architecture considering the V2X emergency delay requirements of a 5G network in the worst-case scenario and performed a system-level simulation on the speed of the car, radius, and cell tier to derive a range of cells for information transfer in SDN network. In the simulation, because 5G provides a sufficiently high data rate, the information for neighboring vehicle support to the car was assumed to be without errors. Furthermore, the 5G small cell was assumed to have a cell radius of 50-100 m, and the maximum speed of the vehicle was considered to be 30-200 km/h in order to examine the network architecture to minimize the delay.