• Title/Summary/Keyword: 환경개선서비스

Search Result 1,674, Processing Time 0.024 seconds

A Study on e-Healthcare Business Model: Focusing on Business Ecosystem Approach (e헬스케어 비즈니스모델에 관한 연구: 비즈니스생태계 접근 중심으로)

  • Kim, Youngsoo;Jung, Jai-Jin
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.14 no.1
    • /
    • pp.167-185
    • /
    • 2019
  • As most G-20 countries expect medical spending to grow rapidly over the next few decades, the burden of healthcare costs continues to grow globally due to an increase in the elderly population and chronic illnesses, and the ongoing quality improvement of health care services. However, under the rapidly changing technological environment of healthcare and IT convergence, the problem may become even bigger if not properly recognized and not properly prepared. In the context of the paradigm shift and the increasing problem of the medical field, complex responses in technical, institutional and business aspects are urgently needed. The key is to derive a business model that is appropriate for businesses that integrate IT in the medical field. With the arrival of the era of the 4th industrial revolution, new technologies such as Internet of Things have been applied to eHealthcare, and the need for new business models has emerged.In the e-healthcare of the Internet era, it became a traditional firm-based business model. However, due to the characteristics of dynamics and complexity of things Internet in the Internet of things, A business ecosystem-based approach is needed. In this paper, we present and analyze the major success factors of the ecosystem based on the 3 - layer structure of the e - healthcare business ecosystem as a result of research on e - healthcare business ecosystem based on emerging technology such as Internet of things. The three-layer business ecosystem was defined as (1) Infrastructure Layer, (2) Character Layer, and (3) Stakeholder Layer. As the key success factors for the eHealthCare business ecosystem, the following four factors are suggested: (1) introduction of the iHealthcare concept, (2) expansion of the business ecosystem, (3) business ecosystem change process innovation, and (4) business ecosystem leadership innovation.

Korean Start-up Ecosystem based on Comparison of Global Countries: Quantitative and Qualitative Research (글로벌 국가 비교를 통한 한국 기술기반 스타트업 생태계 진단: 정량 및 정성 연구)

  • Kong, Hyewon
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.14 no.1
    • /
    • pp.101-116
    • /
    • 2019
  • Technology-based start-up is important in that it encourages innovation, facilitates the development of new products and services, and contributes to job creation. Technology-based start-up activates entrepreneurship when appropriate support is provided within the ecosystem. Thus, understanding the technology-based start-up ecosystem is crucial. The purpose of this study is as follows. First, in Herrmann et al.'s(2015) study, we compare and analyze the ecosystem of each country by selecting representative regions such as Silicon Valley, Tel Aviv, London and Singapore which have the highest ranking in the start-up ecosystem. Second, we try to deeply understand the start-up ecosystem based on in-depth interviews with various stakeholders such as VC investors, start-ups, support organizations, and professors related to the Korean start-up ecosystem. Finally, based on the results of the study, we suggest development and activation of Korean technology-based start-up ecosystem. As a result, the Seoul start-up ecosystem showed a positive evaluation of government support compared to other advanced countries. In addition, it was confirmed that the ratio of tele-work and start-up company working experience of employees was higher than other countries. On the other hand, in Seoul, It was confirmed that overseas market performance, human resource diversity, attracting investment, hiring technological engineers, and the ratio of female entrepreneurs were lower than those of overseas advanced countries. In addition, according to the results of the interview analysis, Seoul was able to find that start-up ecosystems such as individual angel investors, accelerators, support institution, and media are developing thanks to the government's market-oriented policy support. However, in order for this development to continue, it is necessary to improve the continuous investment system, expansion of diversity, investment return system, and accessibility to the global market. A discussion on this issue is presented.

Application and Analysis of Ocean Remote-Sensing Reflectance Quality Assurance Algorithm for GOCI-II (천리안해양위성 2호(GOCI-II) 원격반사도 품질 검증 시스템 적용 및 결과)

  • Sujung Bae;Eunkyung Lee;Jianwei Wei;Kyeong-sang Lee;Minsang Kim;Jong-kuk Choi;Jae Hyun Ahn
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_2
    • /
    • pp.1565-1576
    • /
    • 2023
  • An atmospheric correction algorithm based on the radiative transfer model is required to obtain remote-sensing reflectance (Rrs) from the Geostationary Ocean Color Imager-II (GOCI-II) observed at the top-of-atmosphere. This Rrs derived from the atmospheric correction is utilized to estimate various marine environmental parameters such as chlorophyll-a concentration, total suspended materials concentration, and absorption of dissolved organic matter. Therefore, an atmospheric correction is a fundamental algorithm as it significantly impacts the reliability of all other color products. However, in clear waters, for example, atmospheric path radiance exceeds more than ten times higher than the water-leaving radiance in the blue wavelengths. This implies atmospheric correction is a highly error-sensitive process with a 1% error in estimating atmospheric radiance in the atmospheric correction process can cause more than 10% errors. Therefore, the quality assessment of Rrs after the atmospheric correction is essential for ensuring reliable ocean environment analysis using ocean color satellite data. In this study, a Quality Assurance (QA) algorithm based on in-situ Rrs data, which has been archived into a database using Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Bio-optical Archive and Storage System (SeaBASS), was applied and modified to consider the different spectral characteristics of GOCI-II. This method is officially employed in the National Oceanic and Atmospheric Administration (NOAA)'s ocean color satellite data processing system. It provides quality analysis scores for Rrs ranging from 0 to 1 and classifies the water types into 23 categories. When the QA algorithm is applied to the initial phase of GOCI-II data with less calibration, it shows the highest frequency at a relatively low score of 0.625. However, when the algorithm is applied to the improved GOCI-II atmospheric correction results with updated calibrations, it shows the highest frequency at a higher score of 0.875 compared to the previous results. The water types analysis using the QA algorithm indicated that parts of the East Sea, South Sea, and the Northwest Pacific Ocean are primarily characterized as relatively clear case-I waters, while the coastal areas of the Yellow Sea and the East China Sea are mainly classified as highly turbid case-II waters. We expect that the QA algorithm will support GOCI-II users in terms of not only statistically identifying Rrs resulted with significant errors but also more reliable calibration with quality assured data. The algorithm will be included in the level-2 flag data provided with GOCI-II atmospheric correction.

Emoticon by Emotions: The Development of an Emoticon Recommendation System Based on Consumer Emotions (Emoticon by Emotions: 소비자 감성 기반 이모티콘 추천 시스템 개발)

  • Kim, Keon-Woo;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.227-252
    • /
    • 2018
  • The evolution of instant communication has mirrored the development of the Internet and messenger applications are among the most representative manifestations of instant communication technologies. In messenger applications, senders use emoticons to supplement the emotions conveyed in the text of their messages. The fact that communication via messenger applications is not face-to-face makes it difficult for senders to communicate their emotions to message recipients. Emoticons have long been used as symbols that indicate the moods of speakers. However, at present, emoticon-use is evolving into a means of conveying the psychological states of consumers who want to express individual characteristics and personality quirks while communicating their emotions to others. The fact that companies like KakaoTalk, Line, Apple, etc. have begun conducting emoticon business and sales of related content are expected to gradually increase testifies to the significance of this phenomenon. Nevertheless, despite the development of emoticons themselves and the growth of the emoticon market, no suitable emoticon recommendation system has yet been developed. Even KakaoTalk, a messenger application that commands more than 90% of domestic market share in South Korea, just grouped in to popularity, most recent, or brief category. This means consumers face the inconvenience of constantly scrolling around to locate the emoticons they want. The creation of an emoticon recommendation system would improve consumer convenience and satisfaction and increase the sales revenue of companies the sell emoticons. To recommend appropriate emoticons, it is necessary to quantify the emotions that the consumer sees and emotions. Such quantification will enable us to analyze the characteristics and emotions felt by consumers who used similar emoticons, which, in turn, will facilitate our emoticon recommendations for consumers. One way to quantify emoticons use is metadata-ization. Metadata-ization is a means of structuring or organizing unstructured and semi-structured data to extract meaning. By structuring unstructured emoticon data through metadata-ization, we can easily classify emoticons based on the emotions consumers want to express. To determine emoticons' precise emotions, we had to consider sub-detail expressions-not only the seven common emotional adjectives but also the metaphorical expressions that appear only in South Korean proved by previous studies related to emotion focusing on the emoticon's characteristics. We therefore collected the sub-detail expressions of emotion based on the "Shape", "Color" and "Adumbration". Moreover, to design a highly accurate recommendation system, we considered both emotion-technical indexes and emoticon-emotional indexes. We then identified 14 features of emoticon-technical indexes and selected 36 emotional adjectives. The 36 emotional adjectives consisted of contrasting adjectives, which we reduced to 18, and we measured the 18 emotional adjectives using 40 emoticon sets randomly selected from the top-ranked emoticons in the KakaoTalk shop. We surveyed 277 consumers in their mid-twenties who had experience purchasing emoticons; we recruited them online and asked them to evaluate five different emoticon sets. After data acquisition, we conducted a factor analysis of emoticon-emotional factors. We extracted four factors that we named "Comic", Softness", "Modernity" and "Transparency". We analyzed both the relationship between indexes and consumer attitude and the relationship between emoticon-technical indexes and emoticon-emotional factors. Through this process, we confirmed that the emoticon-technical indexes did not directly affect consumer attitudes but had a mediating effect on consumer attitudes through emoticon-emotional factors. The results of the analysis revealed the mechanism consumers use to evaluate emoticons; the results also showed that consumers' emoticon-technical indexes affected emoticon-emotional factors and that the emoticon-emotional factors affected consumer satisfaction. We therefore designed the emoticon recommendation system using only four emoticon-emotional factors; we created a recommendation method to calculate the Euclidean distance from each factors' emotion. In an attempt to increase the accuracy of the emoticon recommendation system, we compared the emotional patterns of selected emoticons with the recommended emoticons. The emotional patterns corresponded in principle. We verified the emoticon recommendation system by testing prediction accuracy; the predictions were 81.02% accurate in the first result, 76.64% accurate in the second, and 81.63% accurate in the third. This study developed a methodology that can be used in various fields academically and practically. We expect that the novel emoticon recommendation system we designed will increase emoticon sales for companies who conduct business in this domain and make consumer experiences more convenient. In addition, this study served as an important first step in the development of an intelligent emoticon recommendation system. The emotional factors proposed in this study could be collected in an emotional library that could serve as an emotion index for evaluation when new emoticons are released. Moreover, by combining the accumulated emotional library with company sales data, sales information, and consumer data, companies could develop hybrid recommendation systems that would bolster convenience for consumers and serve as intellectual assets that companies could strategically deploy.