• Title/Summary/Keyword: 확산용접

Search Result 145, Processing Time 0.018 seconds

Evaluation on the sensitization degree for Inconel 600 by double-loop electrochemical potentiokinetic reactivation method (Double-loop electrochemical potentiokinetic reactivation 방법에 의한 Inconel 600의 예민화도 평가)

  • Jeong, Gwang-Hu;Lee, Jeong-Hyeong;Kim, Seong-Jong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.110-110
    • /
    • 2018
  • 여러 니켈합금 중 인코넬 600은 원전 가압경수로(PWR)의 튜브 재료로 널리 사용되는 재료이다. 스테인리스강과 비교하여 우수한 내식성과 기계적 특성으로 인해 화학설비, 발전설비, 그리고 해양설비 등과 같은 여러 산업분야에서도 널리 사용되고 있다. 그러나 가압경수로용 증기 발생기의 튜브 재료와 같은 특수 환경에서 예민화에 따른 입계부식 및 입계응력부식 등의 문제가 흔히 보고되고 있다. 이러한 내구성 문제는 설비 및 장비의 수명, 내구성 그리고 안정성 등의 치명적인 영향을 미친다. 따라서 용접, 열처리, 그리고 가공과정에서 발생하는 Inconel 600의 예민화 및 입계부식에 관한 연구가 활발히 진행되고 있다. 그러나 100시간 이상 장시간 열화된 시편에 대한 예민화 연구는 전무한 실정이다. 본 연구에서는 장시간 열화된 Inconel 600의 예민화를 평가하기 위해 최대 1,000시간까지 열화를 실시하였으며, 이에 대한 평가방법으로 Double-Loop Electrochemical Potentiokinetic Reactivation(DL-EPR) 시험법을 적용하였다. 본 실험에서 사용된 인코넬 600의 화학성분(wt, %)은 0.01 C, 0.05 Si, 0.14 Mn, 15.3 Cr, 0.5 Cu, 0.015 S, 그리고 나머지는 Ni 이다. 예민화 평가를 위한 등온 열화는 전기열처리로를 이용하여, $550^{\circ}C$$650^{\circ}C$에서 최대 1000시간까지 실시하였다. 열화에 따른 미세조직 변화는 scanning electron microscope와 energy dispersive x-ray spectroscopy를 이용하여 실시하였다. DL-EPR 실험은 $25^{\circ}C$의 0.1M $H_2SO_4$ + 0.001M KSCN(potasium thiocyanate) 수용액 하에서 실시하였으며, 분극은 OCP로부터 600 mV(SSE vs.)까지 1.67mV/s 주사속도로 forward scan을 실시 후, 동일한 속도로 OCP까지 reverse scan을 실시하였다. Degree Of Sensitization(DOS)값은 anodic scan peak($I_a$) 값과 reverse scan peak($I_r$) 값의 비로 산출하였다. $$i.e.\;DOS=I_r/I_a{\times}100$$. 그 결과, 온도 변수에 따른 Inconel 600강의 예민화 거동은 서로 상이한 경향을 나타내었다. $550^{\circ}C$의 경우, 열화가 진행됨에 따라 DOS값은 급격하게 증가하는 경향을 나타냈다. 반면, $650^{\circ}C$에서는 일정시간 이후부터 Cr 확산 현상에 의한 탈 예민화 현상이 관찰되었다.

  • PDF

The Bonding Strength Characteristic of the Filler Metal Powder on the TLP Bonded Region of Superalloy GTD-111DS (일방향 초내열합금 GTD-111DS에서 삽입금속 분말에 따른 천이액상확산접합부의 접합강도 특성)

  • Oh, In-Seok;Kim, Gil-Moo;Moon, Byeong-Shik
    • Journal of Welding and Joining
    • /
    • v.25 no.5
    • /
    • pp.45-50
    • /
    • 2007
  • The Ni-base superalloy GTD111 DS is used in the first stage blade of high power land-based gas turbines. Advanced repair technologies of the blade have been introduced to the gas turbine industry over recent years. The effect of the filler metal powder on Transient Liquid Phase bonding phenomenon and tensile mechanical properties was investigated on the GTD111 DS superalloy. At the filler metal powder N series, the base metal powders fully melted at the initial time and a large amount of the base metal near the bonded interlayer was dissolved by liquid inter metal. Liquid filler metal powder was eliminated by isothermal solidification which was controlled by the diffusion of B into the base metal. The solids in the bonded interlayer grew from the base metal near the bonded interlayer inward the insert metal during the isothermal solidification. The bond strength of N series filler metal powder was over 1000 MPa. and ${\gamma}'$ phase size of N series TLP bonded region was similar with base metal by influence of Ti, Al elements. At the insert metal powder M series, the Si element fluidity of the filler metal was good but microstructure irregularity on bonded region because of excessive Si element. Nuclear of solids formed not only from the base metal near the bonded interlayer but also from the remained filler metal powder in the bonded interlayer. When the isothermal solidification was finished, the content of the elements in the boned interlayer was approximately equal to that of the base metal. But boride and silicide formed in the base metal near the bonded interlayer. And these boride decreased with the increasing of holding time. The bond strength of M series filler metal powder was about 400 MPa.

A study on the diffusion bonding of the $Al_2$O$_3$ ceramics to metal (A$_2$O$_3$세라믹과 Ni-Cr-Mo鋼과의 인서트 合金을 이용한 擴散接合에 關한 硏究)

  • 김영식;박훈종;김정일
    • Journal of Welding and Joining
    • /
    • v.10 no.3
    • /
    • pp.63-72
    • /
    • 1992
  • The joining methods of ceramics to metals which can be expected to obtain high temperature strength are mainly classified into the solid-state diffusion bonding method and the active brazing method. Between these two, the solid-state diffusion bonding method is given attentions as substituting method for active brazing method due to being capable of obtaining higher bonding strength at high temperature and accurate bonding. In this paper, the solid-state diffusion bonding of $Al_{2}$O$_{3}$ ceramics to Ni-Cr-Mo alloy steel (SNCM21) using insert metal was carried out. The insert metal employed in this study was experimentally home-made, Ag-Cu-Ti alloy. Influence of several bonding parameters of $Al_{2}$O$_{3}$SNCM21 joint was quantitatively evaluated by bonding strength test, and microstructural analyses at the interlayer were performed by SEM/EDX. From above experiments, the optimum bonding condition of the solid-state diffusion bonding of $Al_{2}$O$_{3}$/SNCM21 using Ag-Cu-Ti insert metal was determined. Futhermore, high temperature strength and thermal-shock properties of $Al_{2}$O$_{3}$/SNCM21 joint were also examined. The results obtained are as follows. 1. The maximum bonding strength was obtained at the temperature of 95% melting point of insert metal. 2. The high temperature strength of $Al_{2}$O$_{3}$/SNCM21 joint appeared to bemaximum value at test temperature 500.deg.C and the bonding strength with increasingtemperature showed parabolic curve. 3. The strength of thermal-shocked specimens was far deteriorated than those of as-bonded specimens. Especially, water-quenched specimen after heated up to 600.deg. C was directly fractured in quenching.

  • PDF

Hydrogen Embrittlement Resistance and Diffusible Hydrogen Desorption Behavior of Multipass FCA Weld Metals (다층 FCA 용착금속의 수소취성 저항성 및 확산성 수소 방출 거동)

  • Yoo, Jaeseok;Xian, Guo;Lee, Myungjin;Kim, Yongdeok;Kang, Namhyun
    • Journal of Welding and Joining
    • /
    • v.31 no.6
    • /
    • pp.112-118
    • /
    • 2013
  • In this study, constant loading test (CLT) was performed to evaluate the hydrogen embrittlement resistance for multipass FCA weld metals of 600MPa tensile strength grade. The microstructures of weld metal-2 having the smallest carbon equivalent (Ceq=0.37) consisted of grain boundary ferrite and widmanstatten ferrite in the acicular ferrite matrix. The weld metal-1 having the largest Ceq=0.47, showed the microstructures of grain boundary ferrite, widmanstatten ferrite and the large amount of bainite (vol.%=19%) in the acicular ferrite matrix. The weld metal-3 having the Ceq=0.41, which was composed of grain boundary ferrite, widmanstatten ferrite, and the small amount of bainite (vol.%=9%) in the acicular ferrite matrix. Hydrogen desorption spectrometry (TDS) used to analyze the amount of diffusible hydrogen and trapping site for the hydrogen pre-charged specimens electrochemically for 24 hours. With increasing the current density of hydrogen pre-charging, the released amount of diffusible hydrogen was increased. Furthermore, as increasing carbon equivalent of weld metals, the released diffusible hydrogen was increased. The main trapping sites of diffusible hydrogen for the weld metal having a low carbon equivalent (Ceq=0.37) were grain boundaries and those of weld metals having a relatively high carbon equivalent (Ceq: 0.41~0.47) were grain boundaries and dislocation. The fracture time for the hydrogen pre-charged specimens in the constant loading test was decreased as the carbon equivalent increased from 0.37 to 0.47. This result is mainly due to the increment of bainite that is vulnerable to hydrogen embrittlement.

Effects of Graphene Oxide Addition on the Electromigration Characteristics of Sn-3.0Ag-0.5Cu Pb-free Solder Joints (Graphene Oxide 첨가에 따른 Sn-3.0Ag-0.5Cu 무연솔더 접합부의 Electromigration 특성 분석)

  • Son, Kirak;Kim, Gahui;Ko, Yong-Ho;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.3
    • /
    • pp.81-88
    • /
    • 2019
  • In this study, the effects of graphene oxide (GO) addition on electromigration (EM) lifetime of Sn-3.0Ag-0.5Cu Pb-free solder joint between a ball grid array (BGA) package and printed circuit board (PCB) were investigated. After as-bonded, $(Cu,Ni)_6Sn_5$ intermetallic compound (IMC) was formed at the interface of package side finished with electroplated Ni/Au, while $Cu_6Sn_5$ IMC was formed at the interface of OSP-treated PCB side. Mean time to failure of solder joint without GO solder joint under $130^{\circ}C$ with a current density of $1.0{\times}10^3A/cm^2$ was 189.9 hrs and that with GO was 367.1 hrs. EM open failure was occurred at the interface of PCB side with smaller pad diameter than that of package side due to Cu consumption by electrons flow. Meanwhile, we observed that the added GO was distributed at the interface between $Cu_6Sn_5$ IMC and solder. Therefore, we assumed that EM reliability of solder joint with GO was superior to that of without GO by suppressing the Cu diffusion at current crowding regions.