• Title/Summary/Keyword: 확산연소

Search Result 439, Processing Time 0.028 seconds

A Comparison Study of the Prediction Performance of FDS Combustion Model for the Jet Diffusion Flame Structure (제트 확산화염구조에 대한 FDS 연소모델의 예측성능 비교 연구)

  • Park, Eun-Jung;Oh, Chang-Bo
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.3
    • /
    • pp.22-27
    • /
    • 2010
  • A prediction performance of Fire Dynamics Simulator(FDS) developed by NIST for the diffusion flame structure was validated with experimental results of a laminar slot jet diffusion flame. Two mixture fraction combustion models and two finite chemistry combustion models were used in the FDS simulation for the validation of the jet diffusion flame structure. In order to enhance the prediction performance of flame structure, DNS and radiation model was applied to the simulation. The reaction rates of the finite chemistry combustion models were appropriately adjusted to the diffusion flame. The mixture fraction combustion model predicted the diffusion flame structure reasonably. A 1-step finite chemistry combustion model cannot predict the flame structure well, but the simulation results of a 2-step model were in good agreement with those of experiment except $CO_2$ concentration. It was identified that the 2-step model can be used in the investigation of flame suppression limit with further adjustment of reaction rates

Experimental Study on Edge Flame Instabilities in Solid Rocket Combustion (고체로켓연소에서 에지화염 불안정성에 대한 실험적 연구)

  • Hwang Dong-Jin;Park Jeong;Kim Jeong-Soo;Kim Sung-Cho;Kim Tae-Kwon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.279-282
    • /
    • 2006
  • Experiments in low strain rate methane-air counterflow diffusion flames diluted with $CO_2$ have been conducted to investigate the flame extinction behavior and edge flame oscillation The critical mole fraction at flame extinction is examined in terms of velocity ratio and global strain rate. Onset conditions of the edge flame oscillation and the relevant modes are also provided with global strain rate. It is observed that flame length is intimately relevant to lateral heat loss, and this affects flame extinction and edge flame oscillation considerably. Edge flame oscillations are categorized into three: a growing-, a decaying-, and a harmonic-oscillation mode.

  • PDF

Numerical Study on the Thermophoretic Deposition Characteristics of Soot Particles for Wall Temperature of Burner and Surrounding Air Temperature in Combustion Duct (버너의 벽면온도와 연소실내 주위공기온도에 따른 매연입자의 열영동 부착 특성에 관한 수치적 연구)

  • Choi, Jae-Hyuk;Han, Won-Hui;Yoon, Doo-Ho;Yoon, Seok-Hun;Chung, Suk-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.57-65
    • /
    • 2008
  • The characteristics of soot deposition on the cold wall in laminar diffusion flames have been numerically analyzed with a two-dimension with the FDS (Fire Dynamics Simulator). In particular, the effects of surrounding air temperature and wall temperature have been discussed. The fuel for the flame is an ethylene ($C_2H_4$). The surrounding oxygen concentration is 35%. Surrounding air temperatures are 300K, 600K, 900K and 1200K. Wall temperatures are 300K, 600K and 1200K. The soot deposition length defined as the relative approach distance to the wall per a given axial distance is newly introduced as a parameter to evaluate the soot deposition tendency on the wall. The result shows that soot deposition length is increased with increasing the surrounding air temperatures and with decreasing the wall temperature. And the numerical results led to the conclusion that it is essential to consider the thermophoretic effect for understanding the soot deposition on the cold wall properly.

A Numerical Study On Various Energy and Environmental Systems(Ⅰ) : LPG dispersion, Lake flow, Primary clarifier, Hood ventilation, Cyclone combustor, Dow chlorination reactor. (에너지$\cdot$환경 제반 시스템에 관한 수치 해석적 연구 (Ⅰ) : LPG 확산, 호소 유동, 일차침전조, 국소 환기용 후두, 싸이클론 연소로, Dow 화학 반응로)

  • Jang Dong-Sun;Kim Gyeong-Mi;Lee Eun-Ju;Park Byeong-Su;Kim Bok-Sun
    • Journal of computational fluids engineering
    • /
    • v.2 no.1
    • /
    • pp.93-108
    • /
    • 1997
  • This paper describes several computational results on the various energy and environmental problems using Patankar's SIMPLE method. The specific problems included in this study are : pollutant and flammable material dispersions in open and confined areas, buoyancy-driven flow in a lake, primary clarifier for water and waste water treatment, hood ventilation in workplace. cyclone combustor and Dow chlorination reactor. A control-volume based finite-difference method is employed together with the power-law scheme. The pressure-velocity coupling is resolved by the use of the revised version of SIMPLE, says SIMPLER and SIMPLEC. The Reynolds stresses are closed using the standard or RNG κ-ε models. A nonequilibrium turbulent reaction model is developed for the application of the chlorination process in the Dow thermal reactor. Other important empirical models and physical insights appeared in this study are presented and discussed in a brief note. The computational method developed in this study is considered, in general, as a viable tool for the design and determination of the optimal operating condition of various environmental engineering system of interest.

  • PDF

Effect of Oxygen Enriched Air on the Combustion Characteristics in a Coaxial Non-Premixed Jet (II) - Flame Structure and Temperature Distribution - (산소부화공기가 동축 비예혼합 제트의 연소특성에 미치는 영향 (II) - 화염의 구조와 온도분포 -)

  • Kwark, Ji-Hyun;Jeon, Chung-Hwan;Jang, Young-June
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.2
    • /
    • pp.223-229
    • /
    • 2004
  • Combustion using oxygen enriched air is known as a technology which can increase thermal efficiency due to increase of the flame temperature. Flame shapes, schlieren photos, OH radical chemiluminescence and local flame temperature were examined as a function of OEC(Oxygen Enriched Concentration) in a coaxial non-premixed jet. With increase of OEC, flame length and width decreased, but its brightness increased significantly, and the size of vortices in the flame also increased. Especially, the reaction around the flame surface became active. The strong OH intensity appeared to be made and moved from middle stream to upper one with increase of OEC, which shows combustion reaction in the upper stream becomes more dominant In addition, the temperature distributions of the flames showed similar tendency with OH radical intensities. A flame with high temperature and strong stability was obtained with increasing OEC of the coflow.

Combustion Fluid Field Visualization Using PIV and Related Problems (연소 유동장의 PIV 가시화 측정과 제반 문제들)

  • Kim, Young-Han;Yoon, Young-Bin;Jeung, In-Seuk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.4
    • /
    • pp.504-511
    • /
    • 2000
  • PIV(Particle Image Velocimetry) is a recently developed technique for visualizing the fluid velocity fields. Because it has several advantages over the LDV(Laser Doppler Velocimetry), it became one of the most popular diagnostic tools in spite of its short history. However, its application to combustion is restricted by some problems such as flame illumination, scattered light refraction, particle density variation due to heat release, the combined effect of abrupt change in particle density and fluid velocity on flame contour, and thermophoresis which is particle lagging due to temperature gradient. These problems are expected to be originated from the non-continuous characteristics of flames and the limitations of particle dynamics. In the present study, these problems were considered for the visualization of the instantaneous coaxial hydrogen diffusion flame. And the instantaneous flame contour was detected using particle density difference. The visualized diffusion flame velocity field shows its turbulent and meandering nature. It was also observed that the flame is located inside the outer shear layer and flame geometry is largely influenced by the vorticity.

Study of Aerial Fire Line Construction and Suppression Method on Forest Fire (산불 공중진화 방화선 구축형태 및 진화방법에 관한 연구)

  • Bae, Taek-Hoon;Lee, Si-Young
    • Fire Science and Engineering
    • /
    • v.24 no.5
    • /
    • pp.26-31
    • /
    • 2010
  • In this study, attack process and aerial control line construction type which were considered forest fire type and a case of operations were suggested using the experience of aerial fire attack of all type of forest fires. As the spread rate of forest fire is effected by terrain, slope, wind speed, forest species and etc., we needed to analyze spreading direction, behavior type and intensity before heli-team constructed a aerial control line. Especially, It is important to consider safety of attack team as a their views were obstructed. In this study, we suggested a 13 methods from type A to type M about attack and construction of aerial indirect control line.

Fire at an Indoor Shooting Range in Busan I. Fire Reconstruction (부산 실내사격장 화재 I. 화재재현)

  • Park, Woe-Chul
    • Fire Science and Engineering
    • /
    • v.24 no.2
    • /
    • pp.114-119
    • /
    • 2010
  • The fire at a Busan indoor shooting range on November 14, 2009 was reconstructed by using a computational fluid dynamics model for fire simulations, in order to investigate the cause of the heavy death toll in a short period of time. Spread of the flame and smoke, and temperature distribution obtained by fire simulation were compared with the results of fire investigation based on the CCTV recordings. The flame and smoke flew out violently through the door into the cafeteria from the shooting range, and the cafeteria was filled with smoke just within 3 seconds followed by the onset of fire. This is consistent with the CCTV recordings. It was confirmed, as a result, that people in the cafeteria did not have enough evacuation time. The computed temperature at the door knob reached about $1400^{\circ}C$, near its melting point.

900MWe 가압경수로에 대한 토륨핵연료 및 혼합핵연료 노선 핵특성 분석

  • 주형국;김영진;정형국;노재만;조진영
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05a
    • /
    • pp.46-51
    • /
    • 1998
  • 토륨핵연료를 이용한 플루토늄 소모에 대한 연구를 목적으로 조직된 IAEA CRP(Coordinated Research Program) 업무의 일환으로, 농축우라늄 및 플루토늄을 seed로한 토륨핵연료를 국내의 900MWe 가압경수로에 이용하였을 경우에 플루토늄을 비롯한 heavy isotope의 원소량 변화, 사용 후 핵연료로부터의 방사능 준위, 노심의 반응도 특성을 분석하여 혼합핵연료 노심과 비교하였다. (Th+Pu)O$_2$,는 혼합핵연료 보다 플루토늄의 소모량이 약 2.4배 많으며, fissile 플루토늄 원소의 존재비율은 10% 정도 더 감소하는 것으로 나타나 플루토늄 소모의 특성이 유리하고 핵비확산 성격이 강한 것으로 나타났다 사용후 핵연료의 방사능은, 핵연료가 노심에서 바로 인출된 시점에서 는 (Th+Pu)O$_2$,가 가장 낮으나, 그 이후로는 (Th+Pu)O$_2$와 혼합핵연료의 방사능은 비슷한 반면, (Th+U)O$_2$,의 방사능이 가장 낮은 것으로 나타나 장기적으로는 (Th+U)O$_2$가 가장 유리하다. 대략적인 전환비는 (Th+Pu)O$_2$노심이 약 0.56, (Th+U)O$_2$ 노심은 약 0.63, 혼합핵연료 노심은 약 0.61 정도로 추정되었다. 토륨핵연료의 연소도에 따른 반응도 변화, 가돌리니아봉의 중성자 횹수 성질 및 반응도 특성 등 노심특성은 seed 물질의 특성과 함량에 따라 좌우되는 것으로 나타났다.

  • PDF

An Experimental Study on Flame Structure and Combustion Characteristics of Turbulent Diffusion Flame(I) (난류확산화염의 화염구조와 연소특성에 관한 실험적 연구)

  • Choe, Byeong-Ryun;Jang, In-Gap;Choe, Gyeong-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.3
    • /
    • pp.1028-1039
    • /
    • 1996
  • This study was focused on the examination of the flame structure and the combustion characteristics of diffusion flame which was formed the turbulent shear flow of a double coaxial air jet system. The shear flow was formed by the difference velocity of surrounding air jet(U$\_$s/) and center air jet (U$\_$c/). So experimental condition was divided S-type flame (.lambda. > 1) and C-type flame (.lambda. < 1) by velocity ratio .lambda. (=U$\_$s//U$\_$c/). For examination of the flame structure and the combustion characteristics in diffusion flame, coherent structure was observed in flame by schlieren photograph method. We measured fluctuating temperature and ion current simultaneously and accomplished the statistical analysis of its. According to schlieren photograph, the flame was stabilized in the rim of the direction of lower velocity air jet, coherent eddy was produced and developed by higher velocity air jet. The statistical data of fluctuating temperature and ion current was indicated that reaction was dominated by higher velocity air jet. The mixing state of burnt gas and non-burnt gas was distributed the wide area at Z = 100 mm of C-type flame.