• Title/Summary/Keyword: 확률 모델

Search Result 2,139, Processing Time 0.026 seconds

Evaluation of pre-developed seismic fragility models of bored tunnels (기 개발된 굴착식 터널의 지진취약도 모델 적용성 평가)

  • Seunghoon Yang;Dongyoup Kwak
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.3
    • /
    • pp.187-200
    • /
    • 2023
  • This study analyzed the seismic fragility of bored tunnels based on their surrounding conditions and suggested a representative seismic fragility model. By analyzing the existed seismic fragility models developed for bored tunnels, we developed weighted combination models for each surrounding conditions, such as ground conditions and depth of the tunnel. The seismic fragility curves use the peak ground acceleration (PGA) as a parameter. When the PGA was 0.3 g, the probability of damage exceeding minor or slight damage was 20% for depth of 50 m or less, 10% for depth between 50 m and 100 m, and 3% for depth of 100 m or more. It was also found that the probability of damage was higher for the same PGA and depth when the surrounding ground was rock rather than soil. The probability of damage decreases as the depth increase. This study is expected to be used for developing a comprehensive seismic fragility function for tunnels in the future.

Molecular Simulation of Anagram Problem Solving with PLM (확률 라이브러리 모델(PLM)에 의한 애너그램 문제 해결)

  • Kang, Youn-Jung;Lee, Eun-Seok;Tae, Kang-Soo;Zhang, Byoung-Tak
    • Proceedings of the Korean Society for Cognitive Science Conference
    • /
    • 2005.05a
    • /
    • pp.130-134
    • /
    • 2005
  • 본 연구는 애너그램(anagram) 문제해결 과제에서 발생하는 제약들(영어 철자연쇄 집합의 출현 확률과 단어 내 위치 확률)을 동시에 병렬적으로 만족시키는 확률 모델 학습과정을 보인다. 애너그램에 관한 많은 선행연구들은 이 문제해결 과정이 단순히 기호처리적인 층위뿐만 아니라 하위기호적(subsymbolic) 층위에서의 상향식 처리로 인해 일어남을 밝혀왔고, 주로 영어 철자의 연쇄체의 확률값을 이용해왔다. 본 연구는 확률 라이브러리 모델(Probabilistic Library Model)을 통해 애너그램 문제해결이 한 번씩 끝날 때마다 철자 연쇄체의 출현 및 위치 분포 확률이 어떻게 유연한 변화를 갖는지에 집중한다. 하나의 문제를 풀고 나면 본 모델은 그 전 문제를 풀었을 때의 상태 패턴으로부터 변화를 보인다. 이러한 분포 변화를 통해 하위기호적 활동의 영향이 문제해결에 있어서 학습구조의 유연한 변화에 중요한 영향을 끼친다는 점을 확인했다.

  • PDF

A Methodology to Formulate Stochastic Continuum Model from Discrete Fracture Network Model and Analysis of Compatibility between two Models (개별균열 연결망 모델에 근거한 추계적 연속체 모델의 구성기법과 두 모델간의 적합성 분석)

  • 장근무;이은용;박주완;김창락;박희영
    • Tunnel and Underground Space
    • /
    • v.11 no.2
    • /
    • pp.156-166
    • /
    • 2001
  • A stochastic continuum(SC) modeling technique was developed to simulate the groundwater flow pathway in fractured rocks. This model was developed to overcome the disadvantageous points of discrete fracture network(DFN) modes which has the limitation of fracture numbers. Besides, SC model is able to perform probabilistic analysis and to simulate the conductive groundwater pathway as discrete fracture network model. The SC model was formulated based on the discrete fracture network(DFN) model. The spatial distribution of permeability in the stochastic continuum model was defined by the probability distribution and variogram functions defined from the permeabilities of subdivided smaller blocks of the DFN model. The analysis of groundwater travel time was performed to show the consistency between DFN and SC models by the numerical experiment. It was found that the stochastic continuum modes was an appropriate way to provide the probability density distribution of groundwater velocity which is required for the probabilistic safety assessment of a radioactive waste disposal facility.

  • PDF

A study on the Stochastic Model for Sentence Speech Understanding (문장음성 이해를 위한 확률모델에 관한 연구)

  • Roh, Yong-Wan;Hong, Kwang-Seok
    • The KIPS Transactions:PartB
    • /
    • v.10B no.7
    • /
    • pp.829-836
    • /
    • 2003
  • In this paper, we propose a stochastic model for sentence speech understanding using dictionary and thesaurus. The proposed model extracts words from an input speech or text into a sentence. A computer is sellected category of dictionary database compared the word extracting from the input sentence calculating a probability value to the compare results from stochastic model. At this time, computer read out upper dictionary information from the upper dictionary searching and extracting word compared input sentence caluclating value to the compare results from stochastic model. We compare adding the first and second probability value from the dictionary searching and the upper dictionary searching with threshold probability that we measure the sentence understanding rate. We evaluated the performance of the sentence speech understanding system by applying twenty questions game. As the experiment results, we got sentence speech understanding accuracy of 79.8%. In this case, probability ($\alpha$) of high level word is 0.9 and threshold probability ($\beta$) is 0.38.

Uncertainty Analysis for Parameters of Probability Distribution in Rainfall Frequency Analysis: Bayesian MCMC and Metropolis-Hastings Algorithm (강우빈도분석에서 확률분포의 매개변수에 대한 불확실성 해석: Bayesian MCMC 및 Metropolis-Hastings 알고리즘을 중심으로)

  • Seo, Young-Min;Jee, Hong-Kee;Lee, Soon-Tak
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1385-1389
    • /
    • 2010
  • 수자원 계획에 있어서 강우 또는 홍수빈도분석시 주로 사용되는 확률의 개념은 상대빈도에 대한 극한으로 확률을 정의하는 빈도학파적 확률관점에 속하며, 확률모델에서 미지의 매개변수들은 고정된 상수로 간주된다. 따라서 확률은 객관적이고 매개변수들은 고정된 값을 가지기 때문에 이러한 매개변수들에 대한 확률론적 설명은 매우 어렵다. 본 연구에서는 강우빈도해석에서 확률분포의 매개변수에 대한 불확실성을 정량화하기 위하여 베이지안 MCMC 및 Metropolis-Hastings 알고리즘을 이용한 불확실성 평가모델을 구축하였다. 그리고 베이지안 MCMC 및 Metropolis-Hastings 알고리즘의 적용을 통하여 확률강우량 산정시 확률분포의 매개변수에 대한 통계학적 특성 및 불확실성 구간을 정량화하였으며, 이를 바탕으로 홍수위험평가 및 의사결정과정에서 불확실성 및 위험도를 충분히 설명할 수 있는 프레임워크 구성을 위한 기초를 마련할 수 있었다.

  • PDF

Character Recognition Method Admitting a Sequence Variation of Handwritten Direction (필기 방향 변이를 수용하는 문자 인식 방법)

  • Lee, Do-Gon;Kim, Woo-Saeng
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2005.05a
    • /
    • pp.843-846
    • /
    • 2005
  • 사용자마다 여러 필기 방식이 존재하기 때문에 입력된 문자가 획 순서를 달리하여 필기했을 경우 오인식 발생확률이 많다고 볼 수 있다. 따라서 본 논문에서는 사용자의 서로 다른 필기 방향을 처리하는 인식 방법을 제안한다. 하나의 문자라도 필기 모양에 따라 해당 모델에서 그 문자가 발생할 확률 값이 다르지만 임계 확률 값 즉, 다양한 필기 모양에 상관없는 최소한의 발생 확률 값을 구할 수 있다. 따라서 시스템이 입력 문자를 인식할 때 어떤 모델에서의 발생 확률이 그 모델에서의 임계 확률 값보다 낮을 경우는 훈련과는 다른 필기체로 쓴 것이라고 가정할 수 있으며, 이러한 정보를 통해서 다른 필기 방향의 문자를 인식할 수가 있다.

  • PDF

Statistical Model-Based Voice Activity Detection Using Spatial Cues for Dual-Channel Noisy Speech Recognition (이중채널 잡음음성인식을 위한 공간정보를 이용한 통계모델 기반 음성구간 검출)

  • Shin, Min-Hwa;Park, Ji-Hun;Kim, Hong-Kook
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2010.07a
    • /
    • pp.150-151
    • /
    • 2010
  • 본 논문에서는 잡음환경에서의 이중채널 음성인식을 위한 통계모델 기반 음성구간 검출 방법을 제안한다. 제안된 방법에서는 다채널 입력 신호로부터 얻어진 공간정보를 이용하여 음성 존재 및 부재 확률모델을 구하고 이를 통해 음성구간 검출을 행한다. 이때, 공간정보는 두 채널간의 상호 시간 차이와 상호 크기 차이로, 음성 존재 및 부재 확률은 가우시안 커널 밀도 기반의 확률모델로 표현된다. 그리고 음성구간은 각 시간 프레임 별 음성 존재 확률 대비 음성 부재 확률의 비를 추정하여 검출된다. 제안된 음성구간 검출 방법의 평가를 위해 검출된 구간만을 입력으로 하는 음성인식 성능을 측정한다. 실험결과, 제안된 공간정보를 이용하는 통계모델 기반의 음성구간 검출 방법이 주파수 에너지를 이용하는 통계모델 기반의 음성구간 검출 방법과 주파수 스펙트럼 밀도 기반 음성구간 검출 방법에 비해 각각 15.6%, 15.4%의 상대적 오인식률 개선을 보였다.

  • PDF

Uncertainty based crack growth prediction under variable amplitude loads (변동하중 하에서의 불확실성 기반 균열성장 예측)

  • Leem, Sang-Hyuck;An, Da-Wn;Choi, Joo-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.349-352
    • /
    • 2011
  • 본 논문에서는 변동하중 하에서의 균열 성장 예측을 위하여 손상 모델과 주어진 데이터에 기반하여 균열 성장 모델의 변수를 확률분포로 추정한다. 이를 위해 베이지안 접근법을 활용하여 불확실 변수 결합 확률 분포식을 구축하고, Markov Chain Monte Carlo(MCMC)을 통해서 균열 성장 모델의 변수 샘플을 추출하였다. 여기서 추출된 샘플들을 균열 성장 모델에 적용, 균열 성장의 결과를 확률적인 분포로 예측하였다. 위와 같은 추정은 재료의 물성과 같은 변동성이 있는 변수를 모델에 적용하여, 결과값을 확률적인 분포로 예측하였다. 이것은 기존의 안전계수 개념보다 더욱 적절한 안전 기준을 제시 할 수 있다.

  • PDF

A data-driven approach for lexicon selection for probabilistic language model (확률적 언어 모델을 위한 자료 기반 어휘 구축)

  • Ryu, Sung-Ho;Kim, Jin-Hyung
    • Annual Conference on Human and Language Technology
    • /
    • 2002.10e
    • /
    • pp.3-8
    • /
    • 2002
  • 한국어를 대상으로 하는 확률적 언어 모델에서는 대부분의 경우 형태소를 기본 어휘로서 사용하고 있다. 그러나, 이러한 모델들은 학습 및 검증을 위하여 사람에 의하여 형태소 분석이 이루어진 말뭉치를 필요로 한다. 또한, 형태소의 자동 분석은 현재 표준말을 중심으로 이루어져 있어 그 적용 분야에도 한계가 있다. 본 논문에서는 한국어의 특징을 고려하여 확률적 언어 모델의 구축에 적합한 어휘의 선택 기준에 대하여 고찰하고, 통계적인 기준을 통하여 확률적 언어 모델의 어휘를 구축하는 방법을 제안한다.

  • PDF

Establishing Probability-Based Warrants for Left-Turn Lanes at Unsignalized Intersections (확률기반 비신호교차로의 좌회전 전용차로 설치 기준 정립)

  • Moon, Jaepil
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.1
    • /
    • pp.42-54
    • /
    • 2018
  • This study is to establish the traffic volume-based warrants of left-turn lanes in unsignalized intersections based on a risk probability methodology. This study applied a risk probability of a potential rear-end collision between a left-turn vehicle and the immediately following through vehicle. With the shifted negative exponential model and the compound probability theorem, the risk probability can be expressed as the function of directional volumes, opposing volumes and the percentage of left-turns for a two-lane and four-land highway, respectively. The warrants of installing left-turn lanes on unsignalized intersections were developed with the risk probability. The warrants define the total approaching and opposing volumes to encourage a left-turn lane as a function of operating speed, percentage of left-turn, and number of lanes.