• Title/Summary/Keyword: 확률추출

Search Result 849, Processing Time 0.029 seconds

A Study on the Stratified Cluster Replicated Systematic Unrelated Question Model (층화 집락 반복계통 무관질문모형에 관한 연구)

  • Lee, Gi-Sung
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.2
    • /
    • pp.209-222
    • /
    • 2013
  • We apply stratified cluster sampling to a replicated systematic unrelated question model for a large scale survey in which the population is comprised of several strata developed by several clusters and with sensitive parameters. We first present a replicated systematic unrelated question model using an unrelated question model to procure sensitive information from the population of clusters and then develop a suggested model to an unrelated question by a stratified cluster replicated systematic sampling that can be used in large population of strata. We cover the proportional and optimum allocation for the suggested model. Finally, we compare and analyze the efficiency of the suggested model with the replicated systematic unrelated question model.

Estimation of Frequency-Based Flood Using At-Site Frequency Analysis and Regional Frequency Analysis (지점빈도분석과 지역빈도분석을 이용한 확률홍수량 산정)

  • Lee, Kil-Seong;Park, Kyung-Shin;Chung, Eun-Sung;Kim, Sang-Ug
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.2249-2253
    • /
    • 2008
  • 본 연구에서는 지점빈도분석과 지역빈도분석을 이용하여 확률홍수량을 산정 하였다. 지점빈도 분석은 Annual Maximum Series(AMS) 및 Partial Duration Series(PDS)를 이용하여 자료를 추출하고 각 자료에 적합한 확률분포를 이용하여 확률홍수량을 산정하였다. 그러나 AMS를 이용한 확률홍수량의 산정은 표본의 개수가 부족하면 이에 따른 변동성(variability)이 커지게 되는 단점이 존재하며, PDS를 사용하면 임계값(threshold)에 따른 주관적 영향이 결과에 반영되는 단점이 존재하는 것으로 알려져 있다. 따라서 본 연구에서는 PDS를 사용하는 경우의 단점을 해결하기 위해 연 1.7회의 발생횟수를 갖는 자료를 추출하고 몬테카를로 모의시험을 통하여 주관적 영향을 제거하였다. 또한 두 가지 방법에 의해 산정된 확률홍수량의 비교검토를 위해 지역빈도분석을 수행하였다. 유역의 면적과 일평균강우량으로부터 확률홍수량을 산정할 수 있는 것으로 알려진 Bayesian-Generalized Least Square(B-GLS) 방법을 이용하여 확률홍수량을 산정하였다. 최종적으로 안양천 유역의 13개 소유역에 대한 세 가지 방법에 의해 산정된 확률홍수량을 비교 검토한 결과, 특정한 방법이 항상 우수하다는 결론은 얻을 수 없었으나 각 유역별로 AMS가 가장 크고 B-GLS가 가장 작은 확률홍수량을 갖는 경향을 나타내었다.

  • PDF

A study on the Stochastic Model for Sentence Speech Understanding (문장음성 이해를 위한 확률모델에 관한 연구)

  • Roh, Yong-Wan;Hong, Kwang-Seok
    • The KIPS Transactions:PartB
    • /
    • v.10B no.7
    • /
    • pp.829-836
    • /
    • 2003
  • In this paper, we propose a stochastic model for sentence speech understanding using dictionary and thesaurus. The proposed model extracts words from an input speech or text into a sentence. A computer is sellected category of dictionary database compared the word extracting from the input sentence calculating a probability value to the compare results from stochastic model. At this time, computer read out upper dictionary information from the upper dictionary searching and extracting word compared input sentence caluclating value to the compare results from stochastic model. We compare adding the first and second probability value from the dictionary searching and the upper dictionary searching with threshold probability that we measure the sentence understanding rate. We evaluated the performance of the sentence speech understanding system by applying twenty questions game. As the experiment results, we got sentence speech understanding accuracy of 79.8%. In this case, probability ($\alpha$) of high level word is 0.9 and threshold probability ($\beta$) is 0.38.

관리적 선정 하에서 추출방법의 비교

  • 김종호;류제복;김선웅
    • Communications for Statistical Applications and Methods
    • /
    • v.5 no.2
    • /
    • pp.391-401
    • /
    • 1998
  • 유한모집단에서 표본을 추출할 때 표본으로 추출되는 경우의 수를 줄이거나 바람직하지 않은 표본들이 추출될 확률을 줄이기 위해서 관리적 선정 방법을 사용한다. 본 연구에서는 여러 가지 표본추출방법들을 관리적 선정에 적용하고 예를 통해서 그 효율성을 비교하였다.

  • PDF

Automatic Information Extraction for Structured Web Documents (구조화된 웹 문서에 대한 자동 정보추출)

  • Yun, Bo-Hyun
    • Journal of Internet Computing and Services
    • /
    • v.6 no.3
    • /
    • pp.129-145
    • /
    • 2005
  • This paper proposes the web information extraction system that extracts the pre-defined information automatically from web documents (i.e, HTML documents) and integrates the extracted information, The system recognizes entities without lables by the probabilistic based entity recognition method and extends the existing domain knowledge semiautomatically by using the extracted data, Moreover, the system extracts the sub-linked information linked to the basic page and integrates the similar results extracted from heterogeneous sources, The experimental result shows that the system extracts the sub-linked information and uses the probabilistic based entity recognition enhances the precision significantly against the system using only the domain knowledge, Moreover, the presented system can the more various information precisely due to applying the system with flexibleness according to domains, Because bath the semiautomatic domain knowledge expansion and the probabilistic based entity recognition improve the quality of the information, the system can increase the degree of user satisfaction at its maximum. Thus, this system can satisfy the intellectual curiosity of users from movie sites, performance sites, and dining room sites, We can construct various comparison shopping mall and contribute the revitalization of e-business.

  • PDF

Extracting Comparative Elements from Comparative Sentences (비교 문장으로부터 비교 요소 자동 추출)

  • Yang, Seon;Ko, Young-Joong
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06a
    • /
    • pp.225-228
    • /
    • 2011
  • 본 논문은 비교 마이닝(comparison mining) 의 일환인 비교 요소 자동 추출에 관하여 연구한다. 비교 마이닝은 텍스트 마이닝의 한 분야로서 대용량의 텍스트를 대상으로 비교 관계롤 자동 분석하며, 비교 문장인지 아닌지를 식별하는 단계, 비교 타입을 분류하는 단계, 다양한 비교 요소들을 추출하는 단계, 추출된 요소를 분석 및 요약하는 단계 등을 거치게 된다. 본 연구에서는 특정 타입의 비교 문장이 주어졌을때, 그 문장에서 비교 요소를 자동으로 추출하는 단계의 과제를 수행하며, 우열 비교 타입 및 최상급 타입 문장들을 대상으로 비교 주체, 비교 대상, 비교 술어를 추출한다. 실험 과정으로는, 우선 비교 요소 후보들을 선정하고, 그 후 각 요소별로 확률을 계산하여 가장 높은 수치를 기록한 요소를 정답으로 채택하게 된다. 확률 계산은 지지 벡터 기계 (Support Vector Machine)를 이용한다. 인터넷 상의 다양한 도메인에서 추출된 비교 문장들을 대상으로 비교 요소 추출을 수출한 결과, 정확도 86.81 %의 우수한 성능을 산출 할 수 있었다.

Failure Probability Calculation Method Using Kriging Metamodel-based Importance Sampling Method (크리깅 근사모델 기반의 중요도 추출법을 이용한 고장확률 계산 방안)

  • Lee, Seunggyu;Kim, Jae Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.5
    • /
    • pp.381-389
    • /
    • 2017
  • The kernel density was determined based on sampling points obtained in a Markov chain simulation and was assumed to be an important sampling function. A Kriging metamodel was constructed in more detail in the vicinity of a limit state. The failure probability was calculated based on importance sampling, which was performed for the Kriging metamodel. A pre-existing method was modified to obtain more sampling points for a kernel density in the vicinity of a limit state. A stable numerical method was proposed to find a parameter of the kernel density. To assess the completeness of the Kriging metamodel, the possibility of changes in the calculated failure probability due to the uncertainty of the Kriging metamodel was calculated.

Facial Feature Extraction Using Energy Probability in Frequency Domain (주파수 영역에서 에너지 확률을 이용한 얼굴 특징 추출)

  • Choi Jean;Chung Yns-Su;Kim Ki-Hyun;Yoo Jang-Hee
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.4 s.310
    • /
    • pp.87-95
    • /
    • 2006
  • In this paper, we propose a novel feature extraction method for face recognition, based on Discrete Cosine Transform (DCT), Energy Probability (EP), and Linear Discriminant Analysis (LDA). We define an energy probability as magnitude of effective information and it is used to create a frequency mask in OCT domain. The feature extraction method consists of three steps; i) the spatial domain of face images is transformed into the frequency domain called OCT domain; ii) energy property is applied on DCT domain that acquire from face image for the purpose of dimension reduction of data and optimization of valid information; iii) in order to obtain the most significant and invariant feature of face images, LDA is applied to the data extracted using frequency mask. In experiments, the recognition rate is 96.8% in ETRI database and 100% in ORL database. The proposed method has been shown improvements on the dimension reduction of feature space and the face recognition over the previously proposed methods.

민감한 정보를 얻기 위한 대체 전략에 관한 연구

  • Hong, Gi-Hak;Lee, Gi-Seong;Son, Chang-Gyun
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2003.10a
    • /
    • pp.195-199
    • /
    • 2003
  • Hansen과 Hurwitz(1946)는 우편조사에서의 무응답 문제를 처리하는 방법으로 표본을 응답결과에 따라 응답층과 무응답층으로 나눈 다음, 무응답층의 일부를 랜덤 추출하여 면대면 직접조사에 의해 무응답층의 정보를 얻는 방법을 제안하였다. 본 연구에서는 민감한 모집단에 대한 자료수집 방법으로 직접질문 방법인 Black-Box 방법과 간접질문 방법인 확률화응답기법(RRT)의 결합적 방법을 제시하였고, 층화이중 추출방법을 이용하여 모수를 추정하였다.

  • PDF

A Combined Randomized Response Technique Using Stratified Two-Phase Sampling (층화이중추출을 이용한 결합 확률화응답기법)

  • 홍기학
    • The Korean Journal of Applied Statistics
    • /
    • v.17 no.2
    • /
    • pp.303-310
    • /
    • 2004
  • We suggest a method to procure information from the sensitive population which combine a direct survey method, BB and an indirect survey one, RRT, and a combined estimator that uses the stratified double sampling to estimate the sensitive parameter. We compare the efficiency of our estimator with that of Mangat and Singh model.