We apply stratified cluster sampling to a replicated systematic unrelated question model for a large scale survey in which the population is comprised of several strata developed by several clusters and with sensitive parameters. We first present a replicated systematic unrelated question model using an unrelated question model to procure sensitive information from the population of clusters and then develop a suggested model to an unrelated question by a stratified cluster replicated systematic sampling that can be used in large population of strata. We cover the proportional and optimum allocation for the suggested model. Finally, we compare and analyze the efficiency of the suggested model with the replicated systematic unrelated question model.
Proceedings of the Korea Water Resources Association Conference
/
2008.05a
/
pp.2249-2253
/
2008
본 연구에서는 지점빈도분석과 지역빈도분석을 이용하여 확률홍수량을 산정 하였다. 지점빈도 분석은 Annual Maximum Series(AMS) 및 Partial Duration Series(PDS)를 이용하여 자료를 추출하고 각 자료에 적합한 확률분포를 이용하여 확률홍수량을 산정하였다. 그러나 AMS를 이용한 확률홍수량의 산정은 표본의 개수가 부족하면 이에 따른 변동성(variability)이 커지게 되는 단점이 존재하며, PDS를 사용하면 임계값(threshold)에 따른 주관적 영향이 결과에 반영되는 단점이 존재하는 것으로 알려져 있다. 따라서 본 연구에서는 PDS를 사용하는 경우의 단점을 해결하기 위해 연 1.7회의 발생횟수를 갖는 자료를 추출하고 몬테카를로 모의시험을 통하여 주관적 영향을 제거하였다. 또한 두 가지 방법에 의해 산정된 확률홍수량의 비교검토를 위해 지역빈도분석을 수행하였다. 유역의 면적과 일평균강우량으로부터 확률홍수량을 산정할 수 있는 것으로 알려진 Bayesian-Generalized Least Square(B-GLS) 방법을 이용하여 확률홍수량을 산정하였다. 최종적으로 안양천 유역의 13개 소유역에 대한 세 가지 방법에 의해 산정된 확률홍수량을 비교 검토한 결과, 특정한 방법이 항상 우수하다는 결론은 얻을 수 없었으나 각 유역별로 AMS가 가장 크고 B-GLS가 가장 작은 확률홍수량을 갖는 경향을 나타내었다.
In this paper, we propose a stochastic model for sentence speech understanding using dictionary and thesaurus. The proposed model extracts words from an input speech or text into a sentence. A computer is sellected category of dictionary database compared the word extracting from the input sentence calculating a probability value to the compare results from stochastic model. At this time, computer read out upper dictionary information from the upper dictionary searching and extracting word compared input sentence caluclating value to the compare results from stochastic model. We compare adding the first and second probability value from the dictionary searching and the upper dictionary searching with threshold probability that we measure the sentence understanding rate. We evaluated the performance of the sentence speech understanding system by applying twenty questions game. As the experiment results, we got sentence speech understanding accuracy of 79.8%. In this case, probability ($\alpha$) of high level word is 0.9 and threshold probability ($\beta$) is 0.38.
This paper proposes the web information extraction system that extracts the pre-defined information automatically from web documents (i.e, HTML documents) and integrates the extracted information, The system recognizes entities without lables by the probabilistic based entity recognition method and extends the existing domain knowledge semiautomatically by using the extracted data, Moreover, the system extracts the sub-linked information linked to the basic page and integrates the similar results extracted from heterogeneous sources, The experimental result shows that the system extracts the sub-linked information and uses the probabilistic based entity recognition enhances the precision significantly against the system using only the domain knowledge, Moreover, the presented system can the more various information precisely due to applying the system with flexibleness according to domains, Because bath the semiautomatic domain knowledge expansion and the probabilistic based entity recognition improve the quality of the information, the system can increase the degree of user satisfaction at its maximum. Thus, this system can satisfy the intellectual curiosity of users from movie sites, performance sites, and dining room sites, We can construct various comparison shopping mall and contribute the revitalization of e-business.
Proceedings of the Korean Information Science Society Conference
/
2011.06a
/
pp.225-228
/
2011
본 논문은 비교 마이닝(comparison mining) 의 일환인 비교 요소 자동 추출에 관하여 연구한다. 비교 마이닝은 텍스트 마이닝의 한 분야로서 대용량의 텍스트를 대상으로 비교 관계롤 자동 분석하며, 비교 문장인지 아닌지를 식별하는 단계, 비교 타입을 분류하는 단계, 다양한 비교 요소들을 추출하는 단계, 추출된 요소를 분석 및 요약하는 단계 등을 거치게 된다. 본 연구에서는 특정 타입의 비교 문장이 주어졌을때, 그 문장에서 비교 요소를 자동으로 추출하는 단계의 과제를 수행하며, 우열 비교 타입 및 최상급 타입 문장들을 대상으로 비교 주체, 비교 대상, 비교 술어를 추출한다. 실험 과정으로는, 우선 비교 요소 후보들을 선정하고, 그 후 각 요소별로 확률을 계산하여 가장 높은 수치를 기록한 요소를 정답으로 채택하게 된다. 확률 계산은 지지 벡터 기계 (Support Vector Machine)를 이용한다. 인터넷 상의 다양한 도메인에서 추출된 비교 문장들을 대상으로 비교 요소 추출을 수출한 결과, 정확도 86.81 %의 우수한 성능을 산출 할 수 있었다.
Transactions of the Korean Society of Mechanical Engineers A
/
v.41
no.5
/
pp.381-389
/
2017
The kernel density was determined based on sampling points obtained in a Markov chain simulation and was assumed to be an important sampling function. A Kriging metamodel was constructed in more detail in the vicinity of a limit state. The failure probability was calculated based on importance sampling, which was performed for the Kriging metamodel. A pre-existing method was modified to obtain more sampling points for a kernel density in the vicinity of a limit state. A stable numerical method was proposed to find a parameter of the kernel density. To assess the completeness of the Kriging metamodel, the possibility of changes in the calculated failure probability due to the uncertainty of the Kriging metamodel was calculated.
Journal of the Institute of Electronics Engineers of Korea SP
/
v.43
no.4
s.310
/
pp.87-95
/
2006
In this paper, we propose a novel feature extraction method for face recognition, based on Discrete Cosine Transform (DCT), Energy Probability (EP), and Linear Discriminant Analysis (LDA). We define an energy probability as magnitude of effective information and it is used to create a frequency mask in OCT domain. The feature extraction method consists of three steps; i) the spatial domain of face images is transformed into the frequency domain called OCT domain; ii) energy property is applied on DCT domain that acquire from face image for the purpose of dimension reduction of data and optimization of valid information; iii) in order to obtain the most significant and invariant feature of face images, LDA is applied to the data extracted using frequency mask. In experiments, the recognition rate is 96.8% in ETRI database and 100% in ORL database. The proposed method has been shown improvements on the dimension reduction of feature space and the face recognition over the previously proposed methods.
Proceedings of the Korean Statistical Society Conference
/
2003.10a
/
pp.195-199
/
2003
Hansen과 Hurwitz(1946)는 우편조사에서의 무응답 문제를 처리하는 방법으로 표본을 응답결과에 따라 응답층과 무응답층으로 나눈 다음, 무응답층의 일부를 랜덤 추출하여 면대면 직접조사에 의해 무응답층의 정보를 얻는 방법을 제안하였다. 본 연구에서는 민감한 모집단에 대한 자료수집 방법으로 직접질문 방법인 Black-Box 방법과 간접질문 방법인 확률화응답기법(RRT)의 결합적 방법을 제시하였고, 층화이중 추출방법을 이용하여 모수를 추정하였다.
We suggest a method to procure information from the sensitive population which combine a direct survey method, BB and an indirect survey one, RRT, and a combined estimator that uses the stratified double sampling to estimate the sensitive parameter. We compare the efficiency of our estimator with that of Mangat and Singh model.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.