Proceedings of the Korea Water Resources Association Conference
/
2017.05a
/
pp.108-108
/
2017
깊은 불확실성이 내재되어 있는 기후변화의 특성을 고려한 의사결정은 강건함(Robustness)의 특성을 지니고 있어야 한다. 강건한(Robust) 의사결정은 광범위한 불확실성의 상황에서 모든 요구사항을 충족시키는 전략을 제시한다. 이러한 강건함의 개념은 저수지운영 규칙 산정에 필요한 최적화 과정에도 적용될 수 있는데, 이를 로버스트(Robust) 최적화 과정이라고 한다. 로버스트 최적화 과정은 기존 최적화과정이 현재의 자료를 바탕으로 최적의 해를 찾기 때문에 미래 입력자료의 불확실성을 반영하지 못하는 한계를 극복하기 위하여 등장하였다. 로버스트 최적화 과정은 크게 두 가지 방법으로 나눌 수 있는데, 확률적 로버스트 최적화 방법과 비확률적 로버스트 최적화 방법이다. 확률적 로버스트 최적화 과정은 전통적인 최적화 과정과 동일하게 불확실 변수의 확률분포를 가정하지만, 비확률적 로버스트 최적화 과정은 불확실 변수의 확률분포를 가정하지 않는다. 본 연구는 최근 수자원의 부족을 겪었던 보령댐의 보다 안정적인 이수기 운영방안 산정을 위해 로버스트 최적화 과정을 적용하였다. 먼저 전통적인 최적화 방법을 적용하여 운영방안을 도출한 뒤 기후변화 상황에서의 취약성, 신뢰성, 지속가능성 그리고 회복탄력성 등을 검토하였다. 다음으로 이에 대한 대안으로 로버스트 최적화 방법으로 운영방안을 산출하였으며 이를 기존의 최적화방법과 여러 기준으로 비교하여 그 타당성을 검토하였다. 또한 두 가지 로버스트 최적화 방법을 비교하여 각 과정의 장단점에 대해 논의 하였으며, 어떤 최적화 과정이 댐 운영방안 산정에 있어 보다 합리적이고 타당한지 비교하였다. 본 연구의 결과를 통해, 기후변화의 영향 하에서 보다 안정적인 수자원 관리 방안을 제안할 수 있었다.
This paper describes the method to solve the optimization problems for stochastic simulation which is represented by military simulations. For this reason, the test fitness function reflecting the characteristics of military simulations, complex and stochastic results, is defined and PSO is used to solve the test fitness function. To control the known weak point of PSO for stochastic simulations, this paper proposes a technique which reevaluates the value of global optimum. By using the technique, the result shows notable improvements. From the simulation results, interactions among the calculation conditions which affect the accuracy and speed of optimization are analyzed. And the strategy for the optimization of stochastic simulations is proposed.
Donghoon Lee;Kun-Chul Hwang;Sangil Lee;Won Young Yun
Journal of the Korea Society for Simulation
/
v.32
no.1
/
pp.23-34
/
2023
The purpose of this paper is to review global stochastic optimization algorithms(GSOA) in case binary response experimentation is used and to compare the performances of them. GSOAs utilise estimator of probability of success $\^p$ instead of population probability of success p, since p is unknown and only known by its estimator which has stochastic characteristics. Hill climbing algorithm algorithm, simple random search, random search with random restart, random optimization, simulated annealing and particle swarm algorithm as a population based algorithm are considered as global stochastic optimization algorithms. For the purpose of comparing the algorithms, two types of test functions(one is simple uni-modal the other is complex multi-modal) are proposed and Monte Carlo simulation study is done to measure the performances of the algorithms. All algorithms show similar performances for simple test function. Less greedy algorithms such as Random optimization with Random Restart and Simulated Annealing, Particle Swarm Optimization(PSO) based on population show much better performances for complex multi-modal function.
This paper proposes a new stochastic optimization algorithm for hidden Markov models (HMMs) used as a recognizer of automatic lipreading. The proposed method combines a global stochastic optimization method, the simulated annealing technique, and the local optimization method, which produces fast convergence and good solution quality. We mathematically show that the proposed algorithm converges to the global optimum. Experimental results show that training HMMs by the method yields better lipreading performance compared to the conventional training methods based on local optimization.
Journal of the Computational Structural Engineering Institute of Korea
/
v.14
no.2
/
pp.213-224
/
2001
확률론적 구조설계 최적화는 구조물의 역학적 특성이나 하중의 불확실성이나 임의성과 같은 변동성을 정량적이고 합리적으로 고려할 수 있다는 점에서 기존의 전통적인 확정론적 최적화와 비교된다. 확률론적 최적화의 방법론으로는 개선된 일계이차모멘트법을 이용하는 신뢰도지수에 기반한 접근법(MPFP search)이 널리 알려져 있으며, 최근 목표성능치에 기반한 접근법(MPTP search)이 새롭게 제안되었다. 본 논문에서는 이들 두 가지 접근법에 대한 정식화를 수행하고, 특히 탐색과정에서 소모적인 반복계산을 발견하고 제거하는 알고리즘을 제시하였다. 예제에서 두 접근법에 의한 확률론적 최적화를 수행하고 구조설계 최적화의 관점에서 두 접근법의 장단점을 비교·검토하였다.
Journal of the Korean Society for Aeronautical & Space Sciences
/
v.34
no.9
/
pp.33-44
/
2006
As many scientific phenomena are now investigated using complex computer models, the effective use of Kriging on physical problems has been expanded to provide global approximations for optimization problems. This paper is focused on the two types of strategies to improve efficiency and accuracy of approximate optimization models using Kriging. These methods are performed by the stochastic process, stochastic-localization method(SLM), as the criterion to move the local domains and the design of experiments(DOE), the classical design and space-filling design. The proposed methodology is applied to the designs of 3-bar truss, Sandgren's pressure vessel, and honeycomb upper platform of a satellite structure.
Local search algorithms start from a certain candidate solution and probe its neighborhood to find ones with improved quality. This paper proposes a method of probabilistically filtering out bad-looking neighbors based on a simple low-cost preliminary evaluation heuristics. The probabilistic filtering enables us to save time wasted on fully evaluating those solutions that will eventually be trashed, and thus improves the search efficiency by allowing us to spend more time on examining better looking solutions. Experiments with two large-scaled real-world problems, which are a traffic signal control problem in traffic network and a load balancing problem in production scheduling, have shown that the proposed method finds better quality solutions, given the same amount of CPU time.
Proceedings of the Korea Society for Simulation Conference
/
1998.10a
/
pp.62-64
/
1998
유전 알고리즘은 전통적인 등반 알고리즘을 이용하여 구하기 어려웠던 최적화 문제를 해결하기 위한 강인한 (Robust) 탐색 기법이다. 특히 목적함수가 (1)여러 개의 국부 최대치를 가지거나 (2)수학적으로 표현이 불가능하거나 어렵거나 (3) 목적함수에 교란항이 섞여 있을 경우도 우수한 탐색 능력을 갖는 것으로 알려져 있다. 본 논문에서는 군집성 분석(cluster analysis)을 이용하여 군집화함으로써 유전 알고리즘을 이용하여 나타나는 다양한 해집합을 형성하는 개체군을 그룹화하고, 각 군집에 부여된 군집 적합도에 따라서 최적해를 구함으로써 최적값에 근접시킬 수 있는 탐색 알고리즘을 제안하였으며, 시뮬레이션의 출력이 특정한 테스트 함수의 형태로 나타난다고 가정한 경우에 확률적으로 나타나는 시뮬레이션 모델의 출력을 최대화하는 문제에 대하여 적용하고 분석하였다.
An arrangement of passive sonars is considered to be a fixed underwater surveillance system for detecting an anti-submarine consistently. An effectiveness score for optimizing the arrangement of passive sonars is defined in a function of the probability of detection and localization. These two features contain various probabilistic variations including seasons, sea states, depths of water, etc. Due to this reason, the effectiveness scores show probabilistic characteristics from the input of the arrangement of passive sonars. This paper defines the optimization problem having the results of probabilistic characteristics from various parameters of input conditions. Also, we suggest a simulation-based process of deciding the optimized arrangement of passive sonars using DPSO(Discrete binary version of PSO) method.
In this paper, the spatial randomness and probability characteristics of material properties are inversely estimated by using a set of the stochastic fields for the material properties of geotechnical structures. By using the probability distribution and probability characteristics of these estimated material properties, topology optimization is performed on structure shape, and the results are compared with the existing deterministic topology optimization results. A set of stochastic fields for material properties is generated, and the spatial randomness of material properties in each field is simulated. The probability distribution and probability characteristics of actual material properties are estimated using the partial values of material properties in each stochastic field. The probability characteristics of the estimated actual material properties are compared with those of the stochastic field set. Also, response variability of the ground structure having a modulus of elasticity with randomness is compared with response variability of the ground structure having a modulus of elasticity without randomness. Therefore, the quantified stochastic topology optimization result can be obtained with considering the spatial randomness of actual material properties.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.