다변량 통계분석기법중 하나로 제기된 투사지향방법은 다변량자료를 관심있는 일차원 또는 이차원의 자료로의 선형투사를 찾아 나가는 방법이다. 이 방법은 다변량 자료가 갖는 차원의 문제를 해결해 줄 수 있는 유용한 기법으로 제시되었다. 본 연구에서는 투사지향방법을 이용하여 추정한 다변량 확률밀도함수를 사용한 새로운 비모수적인 판별분석방법을 제시하고, 이를 기존의 모수적 판별분석방법중 실제적으로 많이 사용되는 선형판별함수방법, 그리고 기존의 비모수적 판별분석방법중 계산상의 편리성이 많은 K-최인접방법과 컴퓨터 시뮬레이션을 통하여 비교분석하였다.
음악 유사도 계산은 음악 검색 서비스 구현에서 가장 중요한 요소 중 하나이다. 본 논문은 커버곡 검색의 성능을 제고하기 위한 음악 유사도 학습에 대해서 다룬다. 음악 유사도 함수를 유도하는 데 확률적 선형 판별 분석을 이용하여 잠재 음악 공간을 구한다. 잠재 음악 공간은 같은 커버곡 간의 거리는 줄이고 다른 곡 간의 거리는 크게 되도록 학습한다. 추출된 음악 특징이 잠재 음악 변수에서 생성되었다는 가정 하에 확률 모델을 구하고, 음악의 동질성 여부를 가설검증하여 음악 유사도 함수를 유도한다. 두 가지 커버곡 실험 데이터셋에서 성능 비교를 수행하여 제안한 음악 유사도 함수가 커버곡 검색 성능을 개선시킬 수 있음을 보였다.
본 논문에서는 짧은 테스트 발성에 대한 화자 확인 성능을 개선하는 방법을 제안한다. 테스트 발성의 길이가 짧을 경우 i-벡터/확률적 선형판별분석 기반 화자 확인 시스템의 성능이 하락한다. 제안한 방법은 짧은 발성으로부터 추출한 특징 벡터를 심층 신경망으로 변환하여 발성 길이에 따른 변이를 보상한다. 이 때, 학습시의 출력 레이블에 따라 세 종류의 심층 신경망 이용 방법을 제안한다. 각 신경망은 입력 받은 짧은 발성 특징에 대한 출력 결과와 원래의 긴 발성으로부터 추출한 특징과의 차이를 줄이도록 학습한다. NIST (National Institute of Standards Technology, 미국) 2008 SRE(Speaker Recognition Evaluation) 코퍼스의 short 2-10 s 조건 하에서 제안한 방법의 성능을 평가한다. 실험 결과 부류 내 분산 정규화 및 선형 판별 분석을 이용하는 기존 방법에 비해 최소 검출 비용이 감소하는 것을 확인하였다. 또한 짧은 발성 분산 정규화 기반 방법과도 성능을 비교하였다.
본 논문에서는 집적 영상의 획득과 복원을 이용하여 왜곡에 강인한 물체를 인식하는 방법을 연구한다. 해당 화소들의 확률적 특성인 평균과 표준편차를 이용하여 3차원 공간에서 물체를 복원하고 거리를 추정한다. 표적인식은 Fisher 선형판별법(linear discriminant analysis, LDA)과 주성분 분석법(principal component analysis, PCA) 기술을 결합한 통계적 분류기(statistical classifier)로 수행한다. Fisher 선형판별법은 클래스 간의 판별력을 최대로 하고 주성분 분석법은 Fisher 선형판별법을 수행하기 위한 차원축소를 실행한다. 주성분 분석법은 차원축소 후 복원된 벡터와 원 벡터의 오차를 최소화하는 기술로 알려져 있다. 실험 및 시뮬레이션을 통하여 면외(out-of-plane) 회전된 표적을 본 논문에서 제안한 방법으로 분류한다.
기존의 참조서명과 입력서명을 비교하는 방법 중 분절 단위 비교 방법은 전역적 비교와 점 단위 비교 방법과 비교하여 우수한 장점을 가지고 있다. 그러나 분절 단위 비교 방법은 인식률과 직접적인 관계가 있는 분절의 불안정 문제점이 있다. 이러한 문제점을 해결하기 위하여 본 논문에서는 분절단위 방법 외에 선형판별분석에 의한 매칭방법을 고려한 서명 검증 기법을 제안한다. 최종 검증단계에서 두 개의 독립모델을 효과적으로 융합할 수 있는 확률기반의 베이지안 분류기를 적용하였다 다양한 서명데이타를 이용하여 실험한 결과 제안된 기법은 분절단위 기반 구간분할매칭 기법에 비해 우수한 성능을 나타냈다.
재무분석가들은 기업의 파산에 양향을 미치는 예측변수를 탐색하기 위해서 상당한 연구가 수행되어 왔다. 그러나 기술지향적 중소벤처기업은 일반적으로 역사적 재무자료가 부족하고, 기술경쟁력 수준에 따라 잠재적인 고성장과 고위험이 존재한다. 본 논문에서는 재무자료 대신에 기술력평가 자료를 이용하여 파산을 예측하기 위해서 파산예측 판별모형을 제안하였고, 모형의 정분류율을 통해서 예측력을 검증하기 위해서 교차타당성방법, 최대사후확률방법 등을 사용하였다. 분석결과 중소 벤처기업의 파산예측모형으로 선형판별모형이 로지스틱판별모형보다 적합한 모형이고, 표본자료에 대한 정분류율 추정은 약 69% 이고 정분류율 예측은 약 67% 가 될 것으로 기대된다.
용접공정 해석을 위한 접근방법중에서 우선적으로 결정해야할 사항으로는 비선형적인 요소와 복잡한 물리현상들을 실제적으로 해석하기위한 측정변수의 선정과 이러한 변수를 사용하여 물리적인 현상을 적절히 표현할 수 있는 알고리즘의 개발 등 을 들 수 있다. 최근까지의 연구결과를 바탕으로 해서 측정변수들의 예를 들면 용접 전류(welding current), 아크전압(arc voltage), 음향신호(acoustic signal), 아크 광(arc light) 그리고 온도(temperature)등이 있다. 용접공정을 분석하기 위한 알고 리즘으로는 확률론적 접근(statistical approach), 다양한 실험치를 이용한 인공지능 적 접근(artificial intelligence approach) 그리고 경험치를 바탕으로 인덱스(index) 을 선정하여 이를 직접 사용하는 방법 및 인공지능과 결합된 형태를 이용하는 방법등 이 있다. 또한 용접공정의 특성을 분석하기 위해서는 크게 금속이행모드(metal transfer mode), 아크의 안정성(arc stability) 그리고 용접품질(weld quality) 등을 판별할 수 있는 알고리즘의 개발이 필수적이라 할 수 있다. 본 논문에서는 용접공정 분석과 관련된 최근까지의 연구동향 및 용접신호의 특성을 좀더 심도있게 분석하기 위해 구축해야 할 필수 요건 등을 소개하고자 하며 이를 사용자가 손쉽게 이용할 수 있는 사용자 인터페이스 프로그램을 개괄적으로 설명하고자 한다.
본 논문은 잡음 환경하에서 적응 가능한 음성구간검출를 구축하기 위하여 우도기반의 음성 특징 파라미터의 비선형 차원축소 방법을 제안한다. 제안하는 차원축소 방법은 음성/비음성 클래스에 대한 가우시아 확률 밀도 함수의 비선형적 우도값을 새로운 특징으로 취하는 방법이다. 음성구간검출기의 음성/비음성 결정은 우도비 검증(LRT)의 통계적 방법을 이용하며, 선형판별분석(LDA)에 의한 차원축소 결과와 성능을 비교한다. 실험 결과 제안된 차원 축소 방법으로 음성 특징 파라미터를 2차원으로 축소한 결과가 원래 특징백터의 차원에서의 결과와 대등한 성능을 확인하였다.
이 논문에서는 다중경로 환경하에서 DLL (Delay lock loop)의 동작을 분석하였다. 전체 동작상태는 정상상태 시간오차 확률밀도함수와 MTLL (mean-time-to-lose-lock) 을 이용하여 분석하였다. 그리고 다중경로에서 페이딩 환경에서 지연성분의 존재로 진상-지상 판별함수 S(${\epsilon}$)가 0이 되는 추적 오차점 ${\epsilon}_{0}$가 0이 아님을 보이고, 지연성분의 전력 $g_{2}$, 지연시간 ${\tau}_{d}$의 증가로 인하여 ${\epsilon}_{0}$의 절대값이 증가하며, MTLL의 값이 작아짐을 보였다. 여기에서는 위의 변수들을 이용하여 다중경로 페이딩 환경에서의 시간오차 확률밀도함수와 MTLL을 선형적으로 구하였으며, 다중경로의 영향이 클 경우에는 MTLL은 상당히 낮아짐을 보이고, 이때 진상-지상 오프셋 ${\Delta}$의 증가시킴으로써 MTLL의 값을 증가시킬 수 있다는 것을 관찰하였다. 우리는 먼저 S(${\epsilon}$)가 0이 되는 추적오차점 ${\epsilon}_{0}$을 구하고, 이를 이용하여 진상-지상 판별함수 S(${\epsilon}$)를 선형 근사화시켰으며, 진상-지상 오프셋 ${\Delta}$의 증가에 따른 시간오차 확률밀도함수와 MTLL을 구하고 DDLL의 동작상태를 연구하여, 다중경로의 지연성분에 대한 전력 및 지연시간에 따라 MTLL이 상당히 낮게 되며, 이러한 경우 진상-지상 오프셋 ${\Delta}$을 증가시켜줌으로써 MTLL을 충분히 증가시키고 DLL의 성능을 개선할 수 있다는 결과를 얻었다.
MCN 스포츠 중계의 미디어 인게이지먼트, 미디어 공감, 그리고 미디어 가치와의 관계를 규명하기 위한 이 연구는 MCN 스포츠 중계 시청 경험을 가진 시청자 총 324명을 대상으로 비확률 표본 표집 중에서 목적 표집법을 통해 설문조사를 실시하였다. 탐색적 요인분석을 실시하여 타당도를 확인하였으며, Cronbach's α 검사를 실시하여 신뢰도를 조사하였다. 또한 상관관계분석을 실시하여 판별타당도를 검증하였으며, 연구가설을 검증하기 위해 선형 회귀분석을 실시하여 다음과 같은 결론을 도출하였다. 첫째, MCN 스포츠방송과 관련하여 미디어 인게이지먼트가 미디어 가치에 긍정적인 영향을 미치는 것으로 나타났다. 둘째, 미디어 인게이지먼트가 미디어 공감에 긍정적인 영향을 미치는 것으로 나타났다. 셋째, 미디어 공감이 미디어 가치에 긍정적인 영향을 미치는 것으로 나타났다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.