Journal of the Korean Data and Information Science Society
/
v.23
no.6
/
pp.1127-1135
/
2012
Association rule mining is the method to quantify the relationship between each set of items in a large database. One of the well-studied problems in data mining is exploration for association rules. There are three primary quality measures for association rule, support and confidence and lift. We generate some association rules using confidence. Confidence is the most important measure of these measures, but it is an asymmetric measure and has only positive value. Thus we can face with difficult problems in generation of association rules. In this paper we apply the similarity measures by probabilistic interestingness measure to find a solution to this problem. The comparative studies with support, two confidences, lift, and some similarity measures by probabilistic interestingness measure are shown by numerical example. As the result, we knew that the similarity measures by probabilistic interestingness measure could be seen the degree of association same as confidence. And we could confirm the direction of association because they had the sign of their values.
Journal of the Korean Data and Information Science Society
/
v.25
no.4
/
pp.857-868
/
2014
Data mining is the representative analysis methodology in the era of big data, and is the process to analyze a massive volume database and summarize it into meaningful information. Association rule technique finds the relationship among several items in huge database using the interestingness measures such as support, confidence, lift, etc. But these interestingness measures cannot be used to establish a causality relationship between antecedent and consequent item sets. Moreover, we can not know association direction by them. This paper propose causally confirmed association thresholds to compensate for these problems, and then check the three conditions of interestingness measures. The comparative studies with basic association thresholds, causal association thresholds, and causally confirmed association thresholds are shown by simulation studies. The results show that causally confirmed association thresholds are better than basic and causal association thresholds.
The Journal of Korean Institute of Communications and Information Sciences
/
v.37
no.5C
/
pp.355-364
/
2012
Target processing mechanisms are necessary to collect target information, real-time data fusion, and tactical environment recognition for cooperative engagement ability. Among these mechanisms, the target tracking starts from predicting state of speed, acceleration, and location by using sensors' measurements. However, it can be a problem to give the reliability because the measurements have a certain uncertainty. Thus, a technique which uses multiple sensors is needed to detect the target and increase the reliability. Also, data fusion technique is necessary to process the data which is provided from heterogeneous sensors for target tracking. In this paper, a target tracking algorithm is proposed based on probabilistic data association(PDA) by fusing radar and ESM sensor measurements. The radar sensor's azimuth and range measurements and the ESM sensor's bearing-only measurement are associated by the measurement fusion method. After gating associated measurements, state estimation of the target is performed by PDA filter. The simulation results show that the proposed algorithm provides improved estimation under linear and circular target motions.
Park, Jang-Sik;Wiranegara, Marshall;Son, Geum-Young
The Journal of the Korea institute of electronic communication sciences
/
v.13
no.6
/
pp.1263-1268
/
2018
In this paper, a video analysis is proposed to implement video surveillance system with deep learning object detection and probabilistic data association filter for tracking multiple objects, and suggests its implementation using GPU. The proposed video analysis technique involves object detection and object tracking sequentially. The deep learning network architecture uses ResNet for object detection and applies probabilistic data association filter for multiple objects tracking. The proposed video analysis technique can be used to detect intruders illegally trespassing any restricted area or to count the number of people entering a specified area. As a results of simulations and experiments, 48 channels of videos can be analyzed at a speed of about 27 fps and real-time video analysis is possible through RTSP protocol.
Journal of the Korean Data and Information Science Society
/
v.24
no.1
/
pp.117-124
/
2013
Association rule of data mining techniques is the method to quantify the relationship between a set of items in a huge database, andhas been applied in various fields like internet shopping mall, healthcare, insurance, and education. There are three primary interestingness measures for association rule, support and confidence and lift. Confidence is the most important measure of these measures, and we generate some association rules using confidence. But it is an asymmetric measure and has only positive value. So we can face with difficult problems in generation of association rules. In this paper we apply the similarity measures by probabilistic interestingness measure (PIM) with all marginal proportions (AMP) to solve this problem. The comparative studies with support, confidences, lift, chi-square statistics, and some similarity measures by PIM with AMPare shown by numerical example. As the result, we knew that the similarity measures by PIM with AMP could be seen the degree of association same as confidence. And we could confirm the direction of association because they had the sign of their values, and select the best similarity measure by PIM with AMP.
Journal of the Korean Data and Information Science Society
/
v.24
no.6
/
pp.1189-1197
/
2013
Data mining is the process of analyzing a huge database from different perspectives and summarizing it into useful information. One of the well-studied problems in data mining is association rule generation. Association rule mining finds the relationship among several items in massive volume database using the interestingness measures such as support, confidence, lift, etc. Typical applications for this technique include retail market basket analysis, item recommendation systems, cross-selling, customer relationship management, etc. But these interestingness measures cannot be used to establish a causality relationship between antecedent and consequent item sets. This paper propose causal association thresholds to compensate for this problem, and then check the three conditions of interestingness measures. The comparative studies with basic and causal association thresholds are shown by numerical example. The results show that causal association thresholds are better than basic association thresholds.
Journal of the Korean Data and Information Science Society
/
v.21
no.4
/
pp.709-717
/
2010
The task of association rule mining is to find certain association relationships among a set of data items in a database. There are three primary measures for association rule, support and confidence and lift. In this paper we developed a association rule ranking function using conditional probability increment ratio. We compared our function with several association rule ranking functions by some numerical examples. As the result, we knew that our decision function was better than the existing functions. The reasons were that the proposed function of the reference value is not affected by a particular association threshold, and our function had a value between -1 and 1 regardless of the range for three association thresholds. And we knew that the ranking function using conditional probability increment ratio was very well reflected in the difference between association rule measures and the minimum association rule thresholds, respectively.
KIPS Transactions on Computer and Communication Systems
/
v.2
no.6
/
pp.279-290
/
2013
In digital forensics log files have been stored as a form of large data for the purpose of tracing users' past behaviors. It is difficult for investigators to manually analysis the large log data without clues. In this paper, we propose a text mining technique for extracting intrusion logs from a large log set to recommend reliable evidences to investigators. In the training stage, the proposed method extracts intrusion association words from a training log set by using Apriori algorithm after preprocessing and the probability of intrusion for association words are computed by combining support and confidence. Robinson's method of computing confidences for filtering spam mails is applied to extracting intrusion logs in the proposed method. As the results, the association word knowledge base is constructed by including the weights of the probability of intrusion for association words to improve the accuracy. In the test stage, the probability of intrusion logs and the probability of normal logs in a test log set are computed by Fisher's inverse chi-square classification algorithm based on the association word knowledge base respectively and intrusion logs are extracted from combining the results. Then, the intrusion logs are recommended to investigators. The proposed method uses a training method of clearly analyzing the meaning of data from an unstructured large log data. As the results, it complements the problem of reduction in accuracy caused by data ambiguity. In addition, the proposed method recommends intrusion logs by using Fisher's inverse chi-square classification algorithm. So, it reduces the rate of false positive(FP) and decreases in laborious effort to extract evidences manually.
본 연구는 스타트업 투자성과와 연계된 창업가 역량, 재무정보 등 정량데이터를 기반으로 스타트업 투자자들의 투자결정요인을 분석하였다. 주요 실증결과는 다음과 같다. 첫째, 창업 초기 종업원 수가 많고, 최고경영자의 지분비율이 높을수록 투자승인 확률이 높게 나타났다. 둘째, 재무적 특성에서는 기업의 매출액 규모가 작을수록 투자승인 확률이 높게 나타났다. 이러한 결과는 스타트업의 경우, 기업의 단기성과보다는 투자 결정에 있어 미래가치 혹은 다른 정성적인 요인이 더 고려된다는 점을 보여준다. 셋째, 창업가 특성에서는 CEO 교육수준(학력)이 높을수록 투자승인 확률이 높게 나타났다. 즉, 창업자의 학력은 성공적인 투자 여부에 핵심적인 변수이고 이것은 선행연구의 결과와 다르지 않았다. 또한, 학력과 투자유치의 연관성은 창업 3년 미만 스타트업에서 상대적으로 강하게 나타났다. 선행연구에서 투자정보공개, 관련 데이터 확보의 어려움으로 스타트업 투자에 관한 정량적 실증연구가 거의 진행되지 못한 점을 고려한다면, 본 연구는 설문조사 방식을 뛰어넘어 국내 초기 창업기업만을 대상으로 성공적인 투자유치와 연계된 스타트업의 평가요인을 정량적으로 분석했다는 점에서 중요한 의의를 갖는다.
이탈 고객 예측은 데이터 마이닝에서 다루는 주요한 문제 중에 하나이다. 이탈 고객 예측은 일종의 분류(classification) 문제로 의사결정나무추론, 로지스틱 회귀분석, 인공신경망 등의 기법이 많이 활용되어왔다. 일반적으로 이탈 고객 예측을 위한 모델은 고객의 인구통계학적 정보와 계약이나 거래 정보를 입력변수로 하여 이탈 여부를 목표변수로 보는 형태로 분류 모델을 생성하게 된다. 본 연구에서는 고객과의 지속적인 접촉으로 발생되는 추가적인 사건 정보를 활용하여 연관성 규칙을 생성하고 이 결과를 기존의 방식으로 생성된 분류 모델과 결합하는 이탈 고객 예측 방법을 제시한다. 제시한 방법의 유용성을 확인하기 위해서 특정 국내 신용카드사의 실제 데이터를 활용하여 실험을 수행하였다. 실험 결과 제시된 방법이 기존의 전통적인 분류 모델에 비해서 향상된 성능을 보이는 것을 확인할 수 있었다. 제시된 예측 방법의 장점은 기존의 이탈 예측을 위한 입력 변수들 이외에 고객과 회사간의 접촉을 통해서 생성된 동적 정보들을 통합적으로 활용하여 예측 정확도를 높이고 실시간으로 이탈 확률을 갱신할 수 있다는 점이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.