• Title/Summary/Keyword: 확률론적 지진재해도 분석

Search Result 14, Processing Time 0.027 seconds

Study on the Scenario Earthquake Determining Methods Based on the Probabilistic Seismic Hazard Analysis (확률론적 지진재해도를 이용한 시나리오 지진의 결정기법에 관한 연구)

  • Choi, In-Kil;Nakajima, Masato;Choun, Young-Sun;Yun, Kwan-Hee
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.6 s.40
    • /
    • pp.23-29
    • /
    • 2004
  • The design earthquake used for the seismic analysis and design of NPP (Nuclear Power Plant) is determined by the deterministic or probabilistic methods. The probabilistic seismic hazard analysis(PSHA) for the nuclear power plant sites was performed for the probabilistic seismic risk assessment. The probabilistic seismic hazard analysis for the nuclear power plant site had been completed as a part of the probabilistic seismic risk assessment. The probabilistic method become a resonable method to determine the design earthquakes for NPPs. In this study, the defining method of the probability based scenario earthquake was established, and as a sample calculation, the probability based scenario earthquakes were estimated by the de-aggregation of the probabilistic seismic hazard. By using this method, it is possible to define the probability based scenario earthquakes for the seismic design and seismic safety evaluation of structures. It is necessary to develop the rational seismic source map and the attenuation equations for the development of reasonable scenario earthquakes.

A Preliminary Study on the Probabilistic Determination of Controlling Earthquakes for Nuclear Power Plant Sites in Korea (확률론적 방법에 의한 국내 원전 부지의 제어지진 결정에 대한 기초 연구)

  • 노명현
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.04a
    • /
    • pp.62-66
    • /
    • 1997
  • 확률론적 방법을 적용하여 국내의 4개 원전 부지의 설계지진을 분석하였다. 본 연구에서 사용된 방법은, 지금까지 원전 부지의 안전성 분야에서 적용되어 왔던 기존의 확률론적 재해도분석과는 다른 새로운 방법으로서, 기준확률의 분석과 제어지진의 결정을 위한 지진재해도 분해의 두 과정으로 구성된다. 분석에 사용된 지진원과 지진활동 특성값은 기존의 확률론적 지진재해도 분석에 사용되었던 입력자료이다. 이로부터 계산된 기준확률은 스펙트럼 가속도 감쇄식에 크게 좌우되는 것으로 나타났다. 기준확률1.0$\times$10-5에 대하여, 4개 원전 부지의 제어지진은 평균거리가 13~26kg, 평균 규모가 5.7~6.1 사이에 분포하는 것으로 나타났다. 이 값은 단지 현재의 입력자료에 근거하였을 때의 결과로서, 값 자체의 수치적인 의미보다는 전체적인 분석 과정을 검토하고 또한 현재의 입력자료와 새로운 방법이 조합되었을 때 산출되는 결과의 대략적인 수준을 파악하는데 더 큰 의미가 있다.

  • PDF

Suggestion on Seismic Hazard Assessment of Nuclear Power Plant Sites in Korea (국내 원전부지 지진재해도 평가를 위한 제언)

  • Kang, Tae-Seob;Yoo, Hyun Jae
    • Economic and Environmental Geology
    • /
    • v.51 no.2
    • /
    • pp.203-211
    • /
    • 2018
  • Issues with past practice in seismic hazard analysis of nuclear power plant sites in Korea are addressed. Brief review on both deterministic and probabilistic methods in seismic hazard analysis is given, and most of the continuing discussion is focussed on the probabilistic seismic hazard analysis. Causes of uncertainty are traced on the basis of the cases that the assessment methodology was applied to the nuclear power plant sites. Considerations on the assessment include the role of experts, a representative seismic catalog, seismic source zonation, earthquake ground-motion relationship, and evaluation process. Factors increasing uncertainty in each item are analyzed and some feasible solutions are discussed.

Comparison of Methods for the Analysis Percentile of Seismic Hazards (지진재해도의 백분위수 분석 방법 비교)

  • Rhee, Hyun-Me;Seo, Jung-Moon;Kim, Min-Kyu;Choi, In-Kil
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.43-51
    • /
    • 2011
  • Probabilistic seismic hazard analysis (PSHA), which can effectively apply inevitable uncertainties in seismic data, considers a number of seismotectonic models and attenuation equations. The calculated hazard by PSHA is generally a value dependent on peak ground acceleration (PGA) and expresses the value as an annual exceedance probability. To represent the uncertainty range of a hazard which has occurred using various seismic data, a hazard curve figure shows both a mean curve and percentile curves (15, 50, and 85). The percentile performs an important role in that it indicates the uncertainty range of the calculated hazard, could be calculated using various methods by the relation of the weight and hazard. This study using the weight accumulation method, the weighted hazard method, the maximum likelihood method, and the moment method, has calculated the percentile of the computed hazard by PSHA on the Shinuljin 1, 2 site. The calculated percentile using the weight accumulation method, the weighted hazard method, and the maximum likelihood method, have similar trends and represent the range of all computed hazards by PSHA. The calculated percentile using the moment method effectively showed the range of hazards at the source which includes a site. This study suggests the moment method as effective percentile calculation method considering the almost same mean hazard for the seismotectonic model and a source which includes a site.

Probabilistic Seismic Hazard Analysis of Caisson-Type Breakwaters (케이슨 방파제의 확률론적 지진재해도 평가)

  • KIM SANG-HOON;KIM DOO-KIE
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.1 s.62
    • /
    • pp.26-32
    • /
    • 2005
  • Recent earthquakes, measuring over a magnitude of 5.0, on the eastern coast of Korea, have aroused interest in earthquake analyses and the seismic design of caisson-type breakwaters. Most earthquake analysis methods, such as equivalent static analysis, response spectrum analysis, nonlinear analysis, and capacity analysis, are deterministic and have been used for seismic design and performance evaluation of coastal structures. However, deterministic methods are difficult for reflecting on one of the most important characteristics of earthquakes, i.e. the uncertainty of earthquakes. This paper presents results of probabilistic seismic hazard assessment(PSHA) of an actual caisson-type breakwater, considering uncertainties of earthquake occurrences and soil properties. First, the seismic vulnerability of a structure and the seismic hazard of the site are evaluated, using earthquake sets and a seismic hazard map; then, the seismic risk of the structure is assessed.

Development of New Probabilistic Seismic Hazard Analysis and Seismic Coefficients of Korea Part I: Application and Verification of a Novel Probabilistic Seismic Hazard Analysis Procedure (신(新) 확률론적 지진재해분석 및 국내 지진계수 개발 Part I: 신(新) 확률론적 지진재해분석 기법 적용 및 검증)

  • Park, Duhee;Kwak, Dong-Yeop;Jeong, Chang-Gyun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.7
    • /
    • pp.103-109
    • /
    • 2009
  • The probabilistic seismic hazard analysis (PSHA) calculates the probability of exceedance of a certain ground motion parameter within a finite period at a site of interest. PSHA is very robust in that it can account for the uncertainties in seismic source, wave passage effect, and seismic site effects and hence, it is the most widely used method in quantifying the future earthquake induced ground vibration. This paper evaluates the applicability of a new PSHA that is alleged to be able to reproduce the results of a conventional PSHA method, but generates a series of earthquake scenarios and corresponding ground motion time histories that are compatible with the scenarios. In the application, a 40,000 year period is simulated, during which 16,738 virtual earthquakes have occurred. The seismic hazard maps are generated from the outputs of the new PSHA. Comparisons with the maps generated by the conventional PSHA method demonstrated that the new PSHA can successfully reproduce the results of a conventional PSHA. The new PSHA may not be very meaningful in itself. However, the real advantage of the method is that it can be used to develop probabilisitic seismic site coefficients. The suite of generated ground motion time histories are used to develop probabilistic site coefficients in the companion paper.

  • PDF

Probabilistic Seismic Risk Analysis of Breakwater Structures (방파제 구조물의 확률론적 지진위험도 분석)

  • Kim Sang-Hoon;Yi Jin-Hak;Kim Doo Kie
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.17 no.1
    • /
    • pp.32-40
    • /
    • 2005
  • Recent earthquakes over magnitude 5 in the eastern coast of Korea have aroused interests in the earthquake analyses and seismic design of breakwater structures. Most of earthquake analysis methods such as equivalent static analysis, response spectrum analysis, nonlinear analysis, and capacity analysis methods are deterministic and have been used for seismic design and performance evaluation of breakwater structures. However, deterministic methods are difficult to reflect one of the most important characteristics of earthquakes, i.e. the uncertainty of earthquakes. This paper presents results of probabilistic seismic risk assessment(PSRA) of an actual caisson type breakwater structure considering uncertainties of earthquake occurrences and soil properties. First the seismic vulnerability of a structure and the seismic hazard of the site are evaluated using earthquake sets and seismic hazard map, and then seismic risk of the structure is assessed.

Uniform Hazard Spectra of 5 Major Cities in Korea (국내 5개 주요 도시에 대한 등재해도 스펙트럼)

  • Kim, Jun-Kyoung;Wee, Soung-Hoon;Kyung, Jai-Bok
    • Journal of the Korean earth science society
    • /
    • v.37 no.3
    • /
    • pp.162-172
    • /
    • 2016
  • Since the Northridge earthquake in 1994 and the Kobe earthquake in 1995 occurred, the concept of performance based design has been introduced for designing various kinds of important structures and buildings. Uniform hazard spectra (UHS), with annual exceedance probabilities, corresponding to the performance level of each structure, are required for performance-based design. The probabilistic seismic hazard analysis was performed using spectral ground motion prediction equations, which were developed from both Korean Peninsula and Central and Eastern US region, and several seismotectonic models suggested by 10 expert panel members in seismology and tectonics. The uniform hazard spectra for 5 highly populated cities in Korea, with recurrence period of 500, 1,000, and 2,500 years using the seismic hazard at the frequencies of 0.5, 1.0, 2.0, 5.0, 10.0 Hz and Peak ground acceleration (PGA) were analyzed using the probabilistic seismic hazard analysis. The sensitivity analysis suggests that spectral ground motion prediction equations impact much more on seismic hazard than what seismotectonic models do. The uniform hazard spectra commonly showed a maximum hazard at the frequency of 10 Hz and also showed the similar shape characteristics to the previous study and related technical guides to nuclear facilities.

Development of Probabilistic Seismic Coefficients of Korea (국내 확률론적 지진계수 생성)

  • Kwak, Dong-Yeop;Jeong, Chang-Gyun;Park, Du-Hee;Lee, Hong-Sung
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.10
    • /
    • pp.87-97
    • /
    • 2009
  • The seismic site coefficients are often used with the seismic hazard maps to develop the design response spectrum at the surface. The site coefficients are most commonly developed deterministically, while the seismic hazarde maps are derived probabilistically. There is, hence, an inherent incompatibility between the two approaches. However, they are used together in the seismic design codes without a clear rational basis. To resolve the fundamental imcompatibility between the site coefficients and hazard maps, this study uses a novel probabilistic seismic hazard analysis (PSHA) technique that simulates the results of a standard PSHA at a rock outcrop, but integrates the site response analysis function to capture the site amplification effects within the PSHA platform. Another important advantage of the method is its ability to model the uncertainty, variability, and randomness of the soil properties. The new PSHA was used to develop fully probabilistic site coefficients for site classes of the seismic design code and another sets of site classes proposed in Korea. Comparisons highlight the pronounced discrepancy between the site coefficients of the seismic design code and the proposed coefficients, while another set of site coefficients show differences only at selected site classes.

An Analysis of Probabilistic Seismic Hazard in the Korean Peninsula - Probabilistic Peak Ground Acceleration (PGA) (한반도의 확률론적 지진위험도 분석 - 확률론적 최대지반가속도(PGA))

  • Kyung, Jai-Bok;Kim, Min-Ju;Lee, Sang-Jun;Kim, Jun-Kyung
    • Journal of the Korean earth science society
    • /
    • v.37 no.1
    • /
    • pp.52-61
    • /
    • 2016
  • The purpose of the study was to create a probabilistic seismic hazard map using the input data that reflected the seismo-tectonic characteristics of the Korean Peninsula by applying USGS program (Harmsen (2008). The program was partly modified for the purpose of this study. The uncertainty of input parameters given by specialists was reflected in calculating the seismic hazard values by logic tree method. The general pattern of PGA was quite sensitive and similar to the shape of areal source. The probabilistic seismic hazard map showed the contour distribution of peak acceleration (%g) with 10% probability of exceedance in 5, 10, 20, 50, 100, 250, and 500 years. The result showed that the peak ground acceleration (PGA) values of the northern peninsula were almost half values of the southern peninsula except Hwanghae province. The general trend of the hazard map extended in the direction of NW-SE from Whanghae province to south-eastern regions of the peninsula. The values in northern part of Kangwon province were relatively lower than other areas in the southern peninsula. The maps produced through this study are considered valuable in regulating the seismic safety of the major facilities in the Korean Peninsula.