• Title/Summary/Keyword: 화학 혼화제

Search Result 67, Processing Time 0.028 seconds

Optimum Conditions of Simple Solidifying Agent for the Improvement of Loose Sand Ground (느슨한 모래지반 개량을 위한 간편고화재의 최적 배합비 및 혼합률)

  • Kwon, Ho-Jin;Jeong, Ki-Ryong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.5 no.2
    • /
    • pp.15-21
    • /
    • 2004
  • This study is to develop simple solidifying agent to improve loose sand ground by admixing or injecting. This paper studied the optimum mixing ratio of micro cement, bentonite, chemistry admixture, plasticizer, accelerator for the optimum fluidity and strength. The optimum mixing ratio of micro cement and bentonite is 70% : 20%, the optimum ratio of the weight of rapid solidifying agent to the weight of total improved soil is about 8%, the optimum curing period is five days.

  • PDF

Application of Oyster Shells as Aggregates for Concrete (콘크리트용 골재로서 굴패각의 활용)

  • 어석홍;황규한;김정규
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.4
    • /
    • pp.540-548
    • /
    • 2002
  • The purpose of this study is to analyze the application of oyster shells (OS) as aggregates for concrete. For this purpose, five reference mixes with W/C ratios of 0.4 ∼0.6 at intervals of 0.05 were used. The replacement proportion of OS was varied with ratios of 0, 10, 30, 50 and 100% by volume of fine or coarse aggregate in the reference mixes. OS was washed and crushed for using as aggregates. New chemical reaction between crushed OS aggregate and cement paste was tested through XRD and SEM analysis. Two strength properties (compressive and flexural) were considered. Strength tests were carried out at the ages of 1, 3, 7, 14 and 28 days. The variations of workability, air content and density, drying shrinkage of the specimens with different proportions of OS were also studied. Finally, the hollow concrete block using OS as a substitute material for fine aggregate was made for testing the application of OS. Experimental results showed that my new chemical reaction did not occur due to mixing OS in concrete. The workability and strengths decreased with increase in proportion of OS. The same trend was observed in density and unit weight, but air content increased due to the inherent pores in OS, which showed a possibility to produce light weight concrete with low strength by using OS as coarse aggregates for concrete. Tests on hollow concrete block showed that the compressive strength and absorption ratio were satisfied with quality requirements when the fine aggregate was substituted with OS up to 50% in volume.

Evaluation of Concrete Materials for Desulfurization Process By-products (황부산물의 콘크리트 원료 활용 가능성 평가)

  • Park, Hye-Ok;Kwon, Gi-Woon;Lee, Kyeong-Ho;Kim, Moon-Jeong;Lee, Woo-Weon;Ryu, Don-Sik;Lee, Jong-Gyu
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.28 no.4
    • /
    • pp.15-22
    • /
    • 2020
  • The landfill gas produced in landfill is generally made up of methane(CH4) and carbon dioxide(CO2) of more than 90%, with the remainder made up of hydrogen sulfide(H2S). However, separate pre-treatment facilities are essential as hydrogen sulfide contained in landfill gas is combined with oxygen during the combustion process to generate sulfur oxides and acid rain combined with moisture in the atmosphere. Various desulfurization technologies have been used in Korea to desulfurize landfill gas. Although general desulfurization processes apply various physical and chemical methods, such as treatment of sediment generation according to the CaCO3 generation reaction and treatment through adsorbent, there is a problem of secondary wastes such as wastewater. As a way to solve this problem, a biological treatment process is used to generate and treat it with sludge-type sulfide (S°) using a biological treatment process.In this study, as a basic study of technology for utilizing the biological treatment by-products of hydrogen sulfide in landfill gas, an experiment was conducted to use the by-product as a mixture of concrete. According to the analysis of the mixture concrete strength of sulfur products, the mixture of sulfur by-products affects the strength of concrete and shows the highest strength value when mixing 10%.

A Study on the Possibility of Using Concrete Blocks with Ready Mixed Concrete Sludge (레미콘 슬러지를 활용한 콘크리트블록 활용에 대한 기초 연구)

  • Jung, Jae-Ho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.4
    • /
    • pp.307-312
    • /
    • 2019
  • Sludge generated in the production of ready-mixed concrete is classified as waste and processed at a high cost. In particular, small and medium-sized ready-mix manufacturer are burdened with such costs, and some companies are illegally processing them. Therefore, the purpose of this study is to suggest a method for recycled remicon sludge as a concrete block composition. When the remicon sludge is simply dried, the residual chemical admixture and ettringitee contained in the sludge are present, so that the compressive strength of the concrete block and the compressive strength after freezing and thawing are largely deteriorated to meet the quality standards of the concrete shore and retaining wall block It was not possible to do. As a method for satisfying the physical performance, it was found that the remicon sludge was calcined at a high temperature of about $900^{\circ}C$. to decompose ettringite and residual chemical admixture and then used it.

Drying Shrinkage Characteristics of the Concrete Incorporated Shrinkage Reducing Agent According to Mixed Proportion of Concrete (콘크리트 배합조건에 따른 수축저감제의 건조수축 특성)

  • Kim, Young-Sun;Kim, Kwang-Ki;Park, Soon-Jeon;Kim, Jung-Sun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.3
    • /
    • pp.245-252
    • /
    • 2017
  • Recently, structures such as large retailers, outlets and warehouses have been increasing in accordance with changes in consumption patterns. Since these structures include ultra-flat slab members, they are thoroughly managed to control slab cracking by the plastic and drying shrinkage. In order to control the cracking of the slab member, a chemical crack reduction method is used. In particular, the use of the shrinkage reducing agent has been examined. However, domestic research results are limited. In this study, the shrinkage properties of concrete using shrinkage reducing agent and the drying shrinkage properties according to the mixing factors were investigated. The performance of domestic shrinkage reducing agent was appeared similar to that of overseas high-grade shrinkage reducing agent. As the shrinkage reducing agent usage increased, the drying shrinkage reduction effect increased. At the age of 100 days, the dry shrinkage rate of specimen with the shrinkage reducing agent of 1.5%was shown about half that of the specimen without the shrinkage reducing agent. The shrinkage reducing agent was gound to have no specific performance change for the use of the admixture.

The Evaluation of Fouling Mechanism on Cross Flow Precoagulation-UF Process (십자형 응집-UF 막분리 공정 적용시 전처리 응집조건에 따른 막오염 메카니즘 규명)

  • Jung, Chul-Woo;Son, Hee-Jong
    • Korean Chemical Engineering Research
    • /
    • v.46 no.3
    • /
    • pp.639-645
    • /
    • 2008
  • The objectives of this research are to (1) observe changes in particle size distribution due to formation of microflocs during coagulation process (2) identify the membrane fouling potential on cross flow system (3) investigate the mechanism of membrane fouling. The rate of flux decline for the hydrophobic membrane was significantly greater than for the hydrophilic membrane, regardless of pretreatment conditions. The pretreatment of the raw water significantly reduced the fouling of the UF membrane. Also, the rate of flux decline for the hydrophobic membrane was considerably greater than for the hydrophilic membrane. Applying coagulation process before membrane filtration showed not only reducing membrane fouling, but also improving the removal of dissolved organic materials that might otherwise not be removed by the membrane. That is, during the mixing period, substantial changes in particle size distribution occurred under rapid and slow mixing condition due to the simultaneous formation of microflocs and NOM precipitates. Therefore, combined pretreatment using coagulation not only improved dissolved organics removal efficiency but also flux recovery efficiency.

Preparation and Application Characteristics of Carboxylated Styrene Butadiene Latex for Latex Modified Concrete (라텍스 개질 콘크리트용 Carboxylated Styrene Butadiene 라텍스의 제조와 적용 특성)

  • Lee, Bong-Kyu;Ju, Chang-Sik
    • Korean Chemical Engineering Research
    • /
    • v.50 no.6
    • /
    • pp.1076-1081
    • /
    • 2012
  • For the purpose of development of the latex suitable for latex modified concrete, experimental researches on the preparation of carboxylated styrene butadiene latex by the method of the two-step emulsion polymerization and application to concrete were performed. Sodium dodecylbenzene sulfonate and sodium salt of lauryl sulfonate were selected as anionic emulsifiers, and nonylphenoxy poly(ethyleneoxy) ethanols (n=10, 20, 40) as latex stabilizer. Potassium persulfate and sodium bisulfite were used as redox initiator, besides $Na_2HPO_4$ and $K_2CO_3$ as electrolytes. Polymerization recipe of latex suitable for latex modified concrete were suggested from the experimental researches on the effects of anionic emulsifiers and their concentration on the polymerization stability, and the effect of electrolytes concentration on the particle size of latex. Physical properties, such as slump, air contents, compressive and flexural strength, of latex prepared by suggested polymerization recipe were examined. The experimental results showed that latex modified concrete satisfied the quality standards in slump and air contents. Furthermore, it was turned out that the compressive and the flexural strength of latex modified concrete with 28 days curing time showed appreciably improvements.

Physical and Chemical Properties of Chlorine Bypass System-Dust from Cement Manufacturing (시멘트 생산 시 발생하는 Chlorine Bypass System-dust의 물리 및 화학적 특성)

  • Han, Min-Cheol;Lee, Dong-Joo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.4
    • /
    • pp.310-315
    • /
    • 2019
  • This study conducted a series of studies to find alternative ways to use Chlorine Bypass System-dust(CBS-dust) in cement production. The results of engineering characteristics of CBS-dust are summarized as follows. First of all, the density of CBS-dust is 2.40, lighter than cement and the pH was 12.50 which was strong alkaline. In terms of particle size, it was 11.70 ㎛ which was finer than cement. With chemical properties, calcium oxide(CaO) was the highest as 35.10%, potassium oxide(K2O) was 32.43%, potassium chloride(KCl) was 19.46%, sulfur oxide(SO3) was 6.81%, and the remaining chemical components are SiO2, Fe2O3, Al2O3, MgO, and the like. Therefore, if CBS-dust is used as early-strength chemical admixtures in the concrete secondary products that use a large amount of mineral admixtures without rebar, it can be an effective method for increasing the strength of concrete as an alkali activator and preventing early-frost damage of Cold Weather Concrete.

Preparation and Application Characteristics of Carboxylated Styrene Butadiene Latex for Polymer Cement Mortar (폴리머 시멘트 몰타르 포장재용 Carboxylated Styrene Butadiene 라텍스의 제조와 적용 특성)

  • Lee, Bong-Kyu;Ju, Chang-Sik
    • Korean Chemical Engineering Research
    • /
    • v.50 no.5
    • /
    • pp.789-794
    • /
    • 2012
  • For the purpose of development of the latex suitable for polymer cement mortar, experiments on the preparation of carboxylated styrene butadiene latex by the method of the two-step emulsion polymerization were performed. Methyl methacrylate, methacrylic acid and acrylic acid were selected as carboxylic co-monomer, styrene and butadiene as monomer, sodium dodecylbenzene sulfonate and sodium salt of lauryl sulfonate as anionic emulsifiers, and nonylphenoxy poly (ethyleneoxy) ethanol (n=10, 20, 40) as latex stabilizer. Potassium persulfate and sodium bisulfite were also used as redox initiator, and sodium monohydrogen phosphate and potassium carbonate as electrolytes. The effects of categories and concentration of carboxylic co-monomer, molecular weight control agent, crosslinking agent, and styrene/butadiene monomer ratio on the characteristics of latex were investigated. Polymerization recipes for preparation of polymer cement mortar could be proposed. The prepared latexes were tested for the physical properties such as compressive and flexural strength when latexes were mixed with cement mortar. The results showed that the latex could be adapted to polymer cement mortar. Also, it was recognized that the compressive and flexural strength were exhibited 25.4% and 45.3% respectively higher improvement than the quality standards at 28 days curing time.

An Experimental Study on the Influence of the Qualities of Ordinary Portland Cement on the Flowability of High Flow Concrete (보통 포틀랜드 시멘트 품질이 고유동 콘크리트의 유동 특성에 미치는 영향에 관한 연구)

  • Choi, Sung-Woo;Jo, Hyun-Tae;Ryu, Deug-Hyun;Kim, Gyu-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.1
    • /
    • pp.37-44
    • /
    • 2012
  • Recently, due to developments in construction technology, the use of high-performance concrete became popular. High-performance concrete when compared to the ordinary concrete can better satisfy required performances by using mineral admixture and superplasticizer. Various studies on the effect of admixture materials on the quality of high-performance concrete have been reported. But there exist limited number of reported results on the effect of cement qualities, which is the most important constituent material in concrete. Therefore, in this study, the relationship between the quality of cement and the flowability of high flowing concrete is investigated. Qualities of domestically produced cement were identified, and then the influence of the qualities of cement on the flowability of high flowing concrete is evaluated. The result showed that the dosage of required superplasticizer was dependent on cement fineness, to brain, free-CaO, and interstitial phase, which all trigger initial hydration process of cement. Particularly, the results showed that fineness of cement has a high impact on the dosage of the superplasticizer. For strength property of concrete, the dosage of superplasticizer had a significant effect on the early age strength, but had negligible effect in the long term strength.