• Title/Summary/Keyword: 화학 반응 모형

Search Result 74, Processing Time 0.024 seconds

Application of Pseudo Molecular Complexes (II). A New Mechanism for Aromatic Substitution (유사분자 착물의 응용 (제 2 보). 새로운 방향족 치환반응 기구)

  • Park Byung-Kak
    • Journal of the Korean Chemical Society
    • /
    • v.19 no.3
    • /
    • pp.179-185
    • /
    • 1975
  • A new mechanism is proposed for aromatic substitution, involving the formation of pseudo molecular complexes at the transition state. It accounts for the addition reactions of aromatic compounds with double bond reagents such as ozone, somium tetraoxide and carbene as well as all of the features of electrophilic substitution reactions. The pseudo molecular complex has been proved to be formed by quantum-chemical considerations using the simple Huckel method.

  • PDF

A comparison of models for the quantal response on tumor incidence data in mixture experiments (계수적 반응을 갖는 종양 억제 혼합물 실험에서 모형 비교)

  • Kim, Jung Il
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.5
    • /
    • pp.1021-1026
    • /
    • 2017
  • Mixture experiments are commonly encountered in many fields including food, chemical and pharmaceutical industries. In mixture experiments, measured response depends on the proportions of the components present in the mixture and not on the amount of the mixture. Statistical analysis of the data from mixture experiments has mainly focused on a continuous response variable. In the example of quantal response data in mixture experiments, however, the tumor incidence data have been analyzed in Chen et al. (1996) to study the effects of 3 dietary components on the expression of mammary gland tumor. In this paper, we compared the logistic regression models with linear predictors such as second degree Scheffe polynomial model, Becker model and Akay model in terms of classification accuracy.

Application of Observation Based Model to Seoul Metropolitan Area (관측기반모형을 이용한 수도권 광화학 생성물 해석)

  • 신성수;조석연
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.05b
    • /
    • pp.139-140
    • /
    • 2003
  • 광화학 스모그를 야기하는 오존은 질소산화물과 VOC에 의한 다단계 광화학반응에 의하여 생성된다. 1990년대 초부터 자동차 보급률이 높아지면서, 수도권 지역을 중심으로 고농도 오존 현상이 관찰되었으며 최근에는 지방 주요 도시로 확산되고 있다. 오존은 광화학반응에 의해서 생성되는 제2차 대기오염물질이면서도 반응성이 높아서 다른 화학종의 산화에 지대한 영향을 미치며 일단 생성된 후에도 쉽게 파괴될 수 있다는 점에서 황산화물과 질소산화물과 같은 제2차 대기오염물질과 구별된다. (중략)

  • PDF

Reactive Transport Modeling for Investigating Elemental Cycling at the Groundwater-Surface Water Interface (지하수-지표수 물질순환 평가를 위한 반응성 운송 모형 연구)

  • Heewon Jung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.16-16
    • /
    • 2023
  • 기후변화로 인한 가뭄, 홍수, 녹조 등 이상기후 현상들이 본격화함에 따라 안정적인 수자원 관리의 필요성이 증가하고 있다. 특히 급변하는 환경조건 속에서도 안정적인 수자원 확보를 가능하게 하는 지하수 자원의 적극적인 활용은 기후변화대응에 있어 핵심적인 요소이다. 지하수는 하천, 호수 연안지역 등 다양한 지표의 수문환경과 연결되어 천층지권의 수문생태적 특성을 결정하기 때문에, 지속가능한 수자원 활용을 위해서는 지하수와 지표수의 상호작용에 대한 통합적인 검토가 이루어져야 한다. 하지만 긴밀하게 연계된 특성에도 불구하고 지하수와 지표수에 대한 연구는 오랜기간 개별수문환경에 대해 독립적으로 수행되어왔다. 이러한 연구경향은 저류시간이 크게 다른 지하수와 지표수의 수문적 특성뿐 아니라 개별수문환경에서 나타나는 작용들을 통합적으로 다룰 수 있는 모델의 부제에도 기인한다. 최근 비약적인 연산능력의 향상과 함께 지하수-지표수 환경을 연계한 통합수문모델(Integrated Hydrology Model)의 개발 및 활용이 이루어짐에 따라 기후변화 및 수자원 활용에 따른 수문환경변화 대한 통합적인 연구 시도가 이루어지고 있다. 본 발표에서는 최근의 통합수문모델과 다중요소 반응성 운송 모형(Multicomponent Reactive Transport Model)의 연계를 통한 물질순환 연구의 최신 동향을 소개하고(농도-유량 상관관계, 지표수계의 화학적 풍화와 이산화탄소 저감, 녹조 등), 데이터 기반 모형을 통한 통합수문모델의 연산 효율 및 정확성 향상을 위한 방법에 대해 모색하고자 한다.

  • PDF

Modeling the Fate and Transport of Arsenic in Wetland Sediments (습지 퇴적물에서 비소의 성상과 이동 모의에 관한 수학적 모형)

  • Park, Seok-Soon;Wang, Soo-Kyun
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.4 s.105
    • /
    • pp.434-446
    • /
    • 2003
  • The fate and transport of many trace metals, metalloids, and radionuclides in porous media is closely linked to the biogeochemical reactions that occur as a result of organic carbon being sequentially degraded by different microorganisms using a series of terminal electron acceptors. The spatial distribution of these biogeochemical reactions is affected by processes that are often unique and/or characteristic to a specific environment. Generic model formulations have been developed and applied to simulate the fate and transport of arsenic in two hydrologic settings, permanently flooded freshwater sediments, namely non-vegetated wetland sediments and vegetated wetland sediments. The key physical processes that have been considered are sedimentation, effects of roots on biogeochemistry, advective transport, and differences in mixing processes. Steady-state formulations were applied to the sedimentary environments. Results of numerical simulations show that these physical processes significantly affect the chemical profiles of different electron acceptors, their reduced species, and arsenate as well as arsenite that will result from the degradation of an organic carbon source in the sediments. Even though specific biological transformations are allowed to proceed only in zones where they are thermodynamically favorable, the results show that mixing as well as abiotic reactions can make the profiles of individual electron acceptors overlap and/or appear to reverse their expected order.

A kinetic study of pyrite in the lime roasting of a vertical cyclone (수직 싸이클론의 ${Ca(OH)}_{2}$ 배소에서 $FeS_{2}$의 열적반응에 관한 연구)

  • 조종상
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.1
    • /
    • pp.119-125
    • /
    • 1999
  • This research has been studied in terms of investigating the reaction behavior of pyrite with a cyclone reactor. The Mathematical model has developed pyrite oxidation and lime sulfation in this reactor. The model assumes a chemical control shrinking core behavior for the pyrite and a fluid film control shrinking core behavior for the lime. The model was solved and characterized numerically. Experiments have been performed to study the influence of reaction parameters such as reactor temperatures, pyrite particle sizes, air flow rates, feeding rates, and mixing ratio of pyrite and lime. The oxidation and sulfation products were characterized chemically and physically.

  • PDF

Nucleophilic Substitution Reactions of Benzyl Bromides and Benzyl Iodide with Anilines in MeOH-MeCN Mixtures (MeOH-MeCN 혼합용매계에서 브롬화벤질 및 요오드화벤질과 아닐린 사이의 친핵성 치환반응)

  • Lee, Ik-Choon;Sohn, Se-Chul;Song, Ho-Bong;Lee, Byung-Choon
    • Journal of the Korean Chemical Society
    • /
    • v.28 no.3
    • /
    • pp.155-162
    • /
    • 1984
  • Kinetic studies for the nucleophilic substitution reactions of para-substituted benzyl bromides and benzyl iodide with anilines were carried out in MeOH-MeCN mixtures at 35.0$^{\circ}$C. Hammett $ {\rho}_N,\;{\rho}_C$, Bronsted $ {\beta}$ and solvatochromic correlation coefficient a, s values were determined in order to clarify the transition state variations caused by changing nucleophiles, substituents, leaving group and solvents. The results of solvatochromic equation showed that ${\pi}^{ast}$effect was a dominant factor for the reaction systems studied. It was shown that the reaction proceeds via the dissociative $S_N$2 mechanism using the potential energy surface model approach. The potential energy surface model approach however failed to account for the transition state variation due to leaving group changes. The quatum mechanical approach showed that kinetic results were consistent with proposed dissociative $S_N$2 mechanism.

  • PDF

Kinetic Studies of Nucleophilic Substitution Reaction of para-Substituted Benzoyl Compounds with Pyridines (파라치환 벤조일화합물과 피리딘의 친핵성치환반응에 대한 속도론적 연구)

  • Jeong Wha Kim;Tae Sup Uhm;Ik Choon Lee;In Sun Koo
    • Journal of the Korean Chemical Society
    • /
    • v.29 no.1
    • /
    • pp.15-22
    • /
    • 1985
  • Kinetic studies of nucleophilic substitution reaction of substituted benzoyl cyanides and benzoyl chlorides with pyridines were conducted at 25$^{\circ}C$ in pure acetone solvent. Results showed that (ⅰ) magnitudes of $_{\rho}_S$, $_{\rho}_N$ and ${\beta}$ associated with a change of substituent in the nucleophile indicate relatively advanced bond-formation in the transition state, (ⅱ) the potential energy surface model is able to predict the reaction mechanism, but it is unable to predict the transition state variation to a more product-like transition state, where bond-formation is much more progressed than bond breaking, upon changing the leaving group to that with better leaving ability (ⅲ) the quantum mechanical model predicted the product-like transition state and slightly better leaving ability of CN- as compared with Cl-.

  • PDF

Solvolysis of Substituted Phenacyl Tosylates (치환 페나실토실레이트류의 가용매 분해반응)

  • Park, Byeong Su;Kim, Seong Hong;Yeo, Su Dong
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.3
    • /
    • pp.221-226
    • /
    • 1990
  • The solvolysis of substitued phenacyl tosylates was studied in binary solvent mixtures of methanol-acetonitrile and methanol-acetone at 55$^{\circ}C$. Except for m-nitrophenacyl tosylate, the rate constants were increased with both of electron-donating substituents and electron-withdrawing ones and its rate constants were the largest in the binary solvent mixtures of 90% MeOH-10% MeCN. The results show that the reactions were changed with dissociative $S_N2$ mechanism judging from the magnitude of 1/m values going from the electron-withdrawing group to the electron-donating one of the substrate. And above results were consisted with the account for the PES model and QM approach.

  • PDF