• Title/Summary/Keyword: 화학 물질 유출

Search Result 196, Processing Time 0.033 seconds

A Study on Production of Air Pollutants and Combustion Efficiency of Anthracite-Bituminous Coal Blend Combustor Using Fluidized Bed (유동층을 이용한 유,무연탄 혼합 연소로에서 대기오염물질 생성과 연소효율 연구)

  • Cho, Sang-Won;Min, Byoung-Chul
    • Applied Chemistry for Engineering
    • /
    • v.8 no.3
    • /
    • pp.517-523
    • /
    • 1997
  • We have been studied that combustion efficiency and the production of air pollution of anthracite-bituminous coal blend in a fluidized bed coal combustor. Also, the reaching time of steady state condition have been studied. This experimental results are presented as follows. As the height of fluidized bed combustor becomes higher, the concentrations of $SO_2$ and NOx mainly increased. Also, as anthracite fraction increased, the emission of $SO_2$ concentration was increased but, the variation of $NO_X$ concentration was negligible according to anthracite fraction. When anthracite fraction ratio was increased, elutriation rate was increased and exit combustible content over feeding combustible content was increased. Regardless of anthracite fraction ratio the uncombustible weight percentage according to average diameter of elutriation particles were approximately high in the case of fine particles. Over bed temperature $850^{\circ}C$ and excess air 20%, the difference of combution at the velocity 0.3m/s, bed temperature $850^{\circ}C$, the excess air 20%.

  • PDF

Therapeutic efficacy of the photoactivated sickle cells as novel drug delivery vehicle (약물전달 시스템 개발을 위한 여기된 광감응제의 응용)

  • Choe, Se-woon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.958-960
    • /
    • 2015
  • Sickle cells possess a unique combination of traits that may enable their use as models for novel synthetic tumor targeting controlled release drug carriers with the ability to treat disseminated tumors in advanced metastatic disease. In this study, we assess the ability of light-activated release sickle cells to enhance tumor delivery of the fluorescent dye calcein by delayed photolysis controlled release compared to free systemic administration of calcein. Sickle cells from mouse models of the disease were shown to preferentially accumulate in tumors compared to adjacent tissue, in 4T1 tumors in mice on a time scale about 12 hours. Sickle cells photosensitized with protoporphyrin IX achieved delayed release of 50% of contents 8-16 hours after photoactivation, which was deemed useful for in vivo delivery of cargo to tumors given the tumor accumulation time of the sickle cells. Sickle cells may be useful as a model for new synthetic drug carrier particles with delayed photolysis controlled release properties.

  • PDF

Parameter Sensitivity Analysis of SWAT Model for Prediction of Pollutants Fate in Joman River Basin (조만강 유역의 오염물질 거동 예측을 위한 SWAT 모형의 매개변수 민감도 분석)

  • Kang, Deok-Ho;Kim, Tae-Won;Kim, Young-Do;Kwon, Jae-Hyun
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.787-790
    • /
    • 2008
  • The SWAT(Soil and Water Assesment Tool) is a relatively large scale model for the complicated watershed or river basin. The model was developed to predict the effect of land management practices on water, sediment and agricultural chemical yields in large complex watershed with varying soils, land use and management conditions over long periods of time. Usually streams are divided into urban stream and natural stream in accordance with the development level. In case of urban stream, according to urbanization, as impermeable areas are increasing due to the change of land use condition and land cover condition, dry stream phenomenon at urban stream is rapidly progressed. In this study, long term run-off simulations in urban stream are performed by using SWAT model. Especially, the model is applied in small scale water shed, Joman River basin. The optimization by the sensitivity analysis is also performed for the model parameter estimations.

  • PDF

A Study on the Removal of Dissolved Matter in Groundwater and Characteristics of Fouling using NF and RO (NF와 RO를 이용한 지하수중 용존성 물질의 제거와 막 오염의 특성에 관한 연구)

  • Gwon, Eun-Mi;Yu, Myong-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.12
    • /
    • pp.2205-2213
    • /
    • 2000
  • To investigate removal efficiency of dissolved matter by NF and RO, a pilot plant was operated for six months using groundwater treated by UF membrane. After the pilot plant operation, we performed autopsy test to identify characteristics of foulant attached on the membrane surface applying the used NF and RO in the pilot plant test. In autopsy test, we measured permeate flux and recovery rate of flux by chemical cleaning in each membrane. We also analyzed chemical cleaning disposal to examine component of foulant. Permeate flux of NF and RO1 showed rapid decline after 100 days of operation. Especially, reduction of specific flux in RO1 was more serious than in NF. Specific flux of RO2 with a low recovery rate resulted in gradual flux decline. Removal efficiencies of dissolved inorganic matters as a conductivity were 76.3%, 88.2% and 95.3% respectively for NF, RO1 and RO2, and RO2 presented the highest removal efficiency. And those of dissolved organic matters as TOC were about 80% for both NF and RO. The specific flux of membranes declined gradually from the feed water inlet to outlet of the membrane module and it showed that membrane fouling increased along the feed flow direction. Namely, concentration of pollutants became higher and volume of feed water was less as the feed flow approached to the outlet. It seemed that major foul ants were Ca consolidated into inorganic material and Si consolidated into organic material on the membrane surface. Fe was a great contribution to irreversible fouling. The SEM results indicated that the organic matter was attached to the first layer, closer to the membrane, and then inorganic matter with tetragonal shape layered over them. We could not observe biofouling because microorganism, which was cause of biofouling, was almost pretreated in UF membrane.

  • PDF

Study fo the Characteristics Analysis of Laboratory Chemical Accidents (실험실 화학사고 특성 분석에 관한 연구)

  • Lee, Tae-Hyung;Lee, Deok-Jae;Park, Joong-Don;Shin, Chang-Hyun
    • Fire Science and Engineering
    • /
    • v.30 no.3
    • /
    • pp.110-116
    • /
    • 2016
  • The major aim of this study was to provide information on the chemical accidents that occurred in laboratories over the last 3 years. The total incidence of laboratory chemical accidents was 30 cases; 25 cases occurred at educational institutions. Most accidents (19 cases) occurred due to spills and leaks. The main cause of the accidents analyzed was worker carelessness (21 cases). Twenty-two accidents were related to hazardous chemical substances. In addition, general chemical substances as well as waste liquid contributed 26% to the incidents related to the laboratory. Among the 22 hazardous chemical substances involved in laboratory chemical accident, 67% of accident substances were accident preparedness substances.

A Study on the Impact Scope from Hazardous Chemicals Leakage in Jeju Area - Focused on hydrogen fluoride - (제주지역 유해화학물질 누출사고 시 영향범위에 관한 연구 - 불화수소 중심으로 -)

  • Lim, Chaehyun;Doh, Sang Hyeun;Kim, Changyoung
    • Journal of the Korean Society of Urban Environment
    • /
    • v.18 no.4
    • /
    • pp.495-502
    • /
    • 2018
  • In this study, the AERMOD air diffusing model was used to estimate the range of influence of Hazardous chemicals (hydrogen fluoride) in case of small accidents in Jeju area. The impact scope were in the order of Seogwipo Fire Station, Dongbu Fire Station, Jeju Fire Station, and Seobu Fire Station. Seasonal orders were summer, spring, autumn and winter. The correlation between the meteorological factors shows a strong positive correlation with the wind speed of 0.998 and has a negative correlation with the temperature of -0.463. Through the linear regression analysis, we could estimate the equation of Impact scope = 13.922WS (Wind Speed) - 5.195 and the reliability ($R^2$) was as high as 0.995.

OECD High Production Volume Chemicals Program: Ecological Risk Assessment of Copper Cyanide (대량생산화학물질 초기위해성평가: 시안화구리의 초기 생태위해성평가)

  • Baek, Yong-Wook;Kim, Eun-Ju;Yoo, Sun-Kyoung;Ro, Hee-Young;Kim, Hyun-Mi;Eom, Ig-Chun;Kim, Pil-Je
    • Korean Journal of Ecology and Environment
    • /
    • v.44 no.3
    • /
    • pp.272-279
    • /
    • 2011
  • Copper cyanide is a chemical produced in large quantities with 2,500 tonnes being produced in 2006. It is mainly used for electroplating copper, particularly alkali-Cu plate and brass plating. The purpose of this study is to reassess the physicochemical properties and environmental fate of copper cyanide based on reliable data and and to conduct an ecotoxicity test according to the OECD test guidelines as an initial environmental risk assessment (need to state where this was done). Metal containing inorganic substances are not subject to degradation, biodegradation or hydrolysis. Aquatic toxicity tests of copper cyanide were conducted according to OECD test guideline 201, 202 and 203 for green algae, daphnia, and fish, respectively. The following acute toxicity test results were obtained for aquatic species: 0.089 mg $L^{-1}$ (Algae, 72 Hr-$EC_{50}$); 0.21 mg $L^{-1}$ (flea, 48 Hr-$LC_{50}$); 0.62 mg $L^{-1}$ (Fish, 96 Hr-$ErC_{50}$). The chemical possesses properties indicating a hazard for the aquatic environment (acute toxicity in fish, daphnia and algae below 1.0 mg $L^{-1}$). As a result of this study, copper cyanide has become a candidate for detailed risk assessment. Countries that produce this chemical in significant quantities are recommended to perform specific assessments.

Investigation of Effects of Weir on the Pollutant Mixing in Rivers (하천에서 보가 오염물질 혼합 거동에 미치는 영향 연구)

  • Jung, Sung Hyun;Seo, Il Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.20-20
    • /
    • 2021
  • 하천에서 유해화학물질 유출사고로 인하여 오염물질이 유입되었을 경우, 이에 대응하기 위하여 오염운의 도달시간과 농도를 예측하는 것은 매우 중요하다. 종방향의 혼합거동이 중요한 넓은 범위의 하천을 대상으로 오염물질의 이송을 예측하기 위하여 일반적으로 1차원 Fickian 모형을 사용한다. 그러나 실제 하천에서 오염물질의 농도를 측정하였을 경우, 대부분의 농도분포는 오염물질의 저장대효과로 인하여 긴 tail 부분을 갖는 왜곡된 분포를 갖게 된다. 이러한 저장대 효과는 여러 하천내의 다양한 불규칙성으로부터 발생하나, 국내 하천에 많은 보가 설치되어 있음에도 불구하고 하천 내부에 설치된 수리구조물에 의하여 발생하는 인공적인 저장대 효과에 관한 연구가 미흡한 실정이다. 따라서 본 연구에서는 실내 수리실험과 수치 모의를 통하여 노치가 존재하는 보주변에서의 흐름 특성과 오염 물질의 이송 특성을 규명하고, 이를 통해 보의 지형 및 수리적 인자가 저장대 메커니즘에 미치는 영향을 분석하였다. 수리 실험을 통한 넓은 범위에서의 수평방향 흐름장과 농도장을 측정하기 위하여 본 연구에서는 광역 계측방법인 Large Scale Particle-Image-Velocimetry (LSPIV) 기법과 Planar-Concentration-Analysis (PCA) 기법을 각각 유속과 농도 측정을 위해 적용하였다. 더 많은 보의 지형 및 수리적 조건에 따른 저장대 메커니즘을 분석하기 위하여 3차원 Reynolds-averaged Navier-Stokes (RANS) 모형을 통해 모의조건을 확장 적용하였다. 측정 및 모의 결과를 바탕으로 노치가 존재하는 보의 지형 및 수리적 인자가 저장대 메커니즘에 미치는 영향을 분석하였다. 저장대 영역 면적의 크기는 노치사이의 간격이 증가할수록 증가하였으며 노치의 높이의 경우에는 크게 민감하지 않은 경향을 나타냈다. 추적물질의 체류 시간은 노치사이의 간격과 보의 높이가 증가할수록, 유량이 감소할수록 증가하여 질량교환계수 값이 감소하는 경향을 나타냈다. 프루드 수와 레이놀드 수 모두 질량교환계수와 양의 상관 관계를 나타냈으나 저장대 영역의 면적의 크기와는 낮은 관계성을 나타냈다.

  • PDF

Development of a Computer Code for Analyzing Time-dependent Nuclides Concentrations in the Multi-stage Continuous HLW Processing System (I) - Equilibrium Steady State - (다단계 연속후처리를 포함하는 핵주기공정의 핵종농도 동적분포 해석코드 계발(I) -정상 평형상태 해석모델-)

  • Oh, Se-Kee
    • Proceedings of the KIEE Conference
    • /
    • 2000.11a
    • /
    • pp.262-264
    • /
    • 2000
  • 원자로 내에서 연소 중인 핵연료나 저장 또는 재처리 중인 사용후핵연료의 성분으로서 시설의 공정설계, 안전성분석 및 차폐설계에 중요한 입력자료가 되는 핵분열생성물질, 방사화생성물 및 악티나이드의 핵종 농도와 이에 대응하는 방사능 강도의 기기 별 시간변 화율을 해석할 수 있는 코드 개발할 목적으로 MULTISAMS 정상 평형상태 모델을 구현하였다. MULTISAMS 코드의 반응공정 모델은 서로 연결되어 있으며 내부에 방사성물질의 혼합유체가 순환하는 세 종류의 반응기(원자로, 열교환기 및 화학반응기) 계통에서 자연적 또는 설계에 의해 일어나는 현상으로서; 반응기 간의 물질 흐름; 각 반응기 내에서 방사성 붕괴, 변환, 이동과 중성자 흡수 및 핵분열; 외부로부터 특정 핵종의 유입혹은 유출을 고려한 시간종속 핵종농도보존방정식 이론에 근거한다. 코드의 유용성 및 신뢰성을 검증하기 위해 현재 개념설계가 진행 중인 AMBIDEXTER원자력 에너지시스템을 대상으로 ORIGEN2 계산과 비교하였다. 두 코드 간의 입력조건과 배경이론차이점 때문에 절대적 비교가 불가능하므로 단순이론의 중간매개코드로서 SAMS를 이용한 2단계 비교방법을 따랐다. 결론은 MULTISAMS는 ORIGEN2 계산의 수렴치와 근사하게 일치하면서 ORIGEN2 가 다룰 수 없는 핵주기 연속후처리공정의 정상가동 시 핵종 평형농도를 기기 별로 계산할 수 있다는 장점을 확인하였다.

  • PDF

An Investigation into the Release of Chemical Oxygen Demand in Organic Filter Media (유기성 여재로부터 화학적 산소요구량 물질의 방출에 관한 연구)

  • Guerra, Heidi B.;Kim, Youngchul
    • Journal of Wetlands Research
    • /
    • v.22 no.3
    • /
    • pp.171-177
    • /
    • 2020
  • To improve the nitrogen reduction capability of stormwater treatment systems subjected to intermittent saturation, organic materials are often added as filter media. However, these materials can be an additional source of organic carbon and increase the chemical oxygen demand (COD) in the outflow. In this study, different types of organic filter media were subjected to a batch leaching test to observe and quantify the release of COD. Results reveal that the initial pH of the tap water used for soaking which is 7.5-7.7 is conducive to the release of organics from the media to the leachate. The highest amount of COD released was observed in yard clippings and woodchip followed by compost and bark mulch. The leaching of organics also increased as the size of the media decreases due to higher surface area per volume. In addition, empirical regression analysis predicted that COD from these organic media will be exhausted from the material in 3-5 months to up to 26 months depending on the type of media. The results of this study can serve as a guide in estimating the potential release of COD in organic media in order to ensure their safe application in stormwater treatment facilities.