• Title/Summary/Keyword: 화학합성

Search Result 4,107, Processing Time 0.028 seconds

Morphological Changes in the Skin of Hairless Mouse Fed Various Kimchi Diet (김치종류별 식이가 Hairless Mouse 피부의 형태학적 변화에 미치는 영향)

  • Ryu, Bog-Mi;Ryu, Seung-Hee;Yang, Young-Churl;Lee, Yu-Soon;Jeon, Young-Soo;Moon, Gap-Soon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.9
    • /
    • pp.1469-1475
    • /
    • 2004
  • Skin is the most frequently exposed tissues to oxidative stress from exogenous and endogenous sources. Dietary antioxidants, which suppress oxidative stress including reactive oxygen metabolites, play an important role in protecting skin from deleterious reactive oxygen species. Kimchi containing lots of antioxidative compounds shows anti-aging effect on skin. Therefore the morphologic changes on the skin of hairless mice fed diets containing Korean cabbage, mustard leaf, and buchu kimchi for 16 weeks were determined. Although epidermal thickness was decreased with age, kimchi prevented this thinning of epidermis compared to control group. In kimchi groups, the staining area of cytokeratin was smaller and stratum corneum was thinner than control group. It suggests that various kinds of kimchi diets prevent the increase of keratinization in epidermis with aging. Type Ⅳ collagen, a major structural protein of basement membrane supporting matrices, existed greater amount in kimchi groups than control group, especially in mustard leaf kimchi group. Rough endoplasmic reticulum (RER) of fibroblast was well developed in dermis of Korean cabbage and mustard leaf kimchi groups, which means collagen synthesis at dermis increased in those kimchi groups. This morphological changes of skin suggest that kimchi consumption can retard skin aging due to the presence of antioxidant and anti-aging compounds, especially some components of mustard leaf kimchi may largely affect on the skin rejuvenescence.

Comparison of Performances of Forward Osmosis and Membrane Distillation Processes for Shale Gas Plant Water Treatment (셰일가스 플랜트 용수 처리를 위한 정삼투(FO)와 막증발(MD) 공정의 성능 비교)

  • Koo, Jaewuk;Lee, Sangho;Shin, Yonghyun;Yun, Taekgeun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.3
    • /
    • pp.279-284
    • /
    • 2015
  • As non-conventional oil resources such as shale gas have been widely developed, proper treatment of flowback and produced water is becoming important. However, application of conventional water treatment techniques is limited due to high concentration of pollutants such as oil and grease, organics, harmful chemicals, and inorganic ions. In this study, we examined the feasibility of using forward osmosis (FO) and air gap membrane distillation (AGMD) as novel treatment options for shale gas wastewater. Laboratory-scale FO and MD devices were fabricated and used for the experiments. Results showed that FO could be used to treat the synthetic wastewater. Using 5 M NaCl as the draw solution, the flux was approximately $6L/m^2-hr$ during the treatment of low range wastewater (TDS: 66,000 mg/L). Nevertheless, AGMD was more effective to treat high range wastewater (Total Dissolved Solid: 260,000 mg/L) than FO.

Global Trends of Bioethanol Science Information (바이오에탄올 학술정보 분석)

  • Kil, Sang-Cheol;Kim, Sang-Woo;Oh, Mihn-Soo
    • Economic and Environmental Geology
    • /
    • v.45 no.5
    • /
    • pp.589-597
    • /
    • 2012
  • Recently, an understanding of new sources of liquid hydrocarbons such as bioethanol is economically very important. Bioethanol is actually ethyl alcohol or also referred to as ethanol, identical to drinking alcohol by its composition. There are mainly two ways of producing ethanol, namely by synthesis of hydrocarbons and from biomass. Only the second approach deserves the terminology 'bioethanol'. The present dissertation is also designed with purpose of developing the energy-saving process for the separation of bioethanol. The world population is expected to grow past 8 billion by 2030 which are almost 60% in Asia Pacific. History has shown that energy use rises much faster than population expands. World wide demand for energy will increase significantly during the next 15 years driven by population growth and the transition of emerging markets into the global economy. In developing nations, a smaller increment in GDP per capita yields a higher increment in energy consumption compared to developed countries. In this study, we analised total 2,454 dissertations for the bioethanol during the 2001~2012 periods by the programs of 'web of science' and 'recently developped program by Korea Institute of Science Technology Information'.

Synthesis and Physical Properties of MO·Fe12O18 (M/Ba and Sr) Nanoparticles Prepared by Sol-Gel Method Using Propylene Oxide (Propylene Oxide를 이용한 졸-겔법에 의한 MO·Fe12O18 (M/Ba, Sr) 나노 분말의 합성과 물리적 특성)

  • Lee, Su Jin;Choe, Seok Burm;Gwak, Hyung Sub;Paik, Seunguk
    • Applied Chemistry for Engineering
    • /
    • v.17 no.4
    • /
    • pp.420-425
    • /
    • 2006
  • Nano sized mixed metal hexagonal ferrite powders with improved magnetic properties have been prepared by sol-gel method using propylene oxide as a gelation agent. To obtain the desired ferrite, two different metal ions were used. One of the ions has only +2 formal charge. The key step in the processes is that hydrated $Ba^{2+}$ or $Sr^{2+}$ ions are hydrolyzed and condensed at the surface of the previously formed $Fe_{2}O_{3}$ gel. In this processes, all the reaction can be finished within a few minutes. The magnetic properties of the produced powder were improved by heat treatment. The highest values of the magnetic properties were achieved at temperature $150^{\circ}C$ lower than those of the previously published values. The highest observed values of coercivity and the saturation magnetization of Sr-ferrite and Ba-ferrite powder were 6198 Oe, 5155 Oe and 74.4 emu/g, 68.1 emu/g, respectively. The ferrite powder annealed at $700^{\circ}C$ showed spherical particle shapes. The resulting spheres which were formed by the aggregation of nanoparticles with size 3~5 nm have diameter around 50 nm. The powder treated at $800^{\circ}C$ showed hexagonal-shaped grains with crystallite size above 500 nm.

Direct Incorporation of Carbon Dioxide to Poly(GMA) Using Quaternary Ammonium Salt Catalysts (4차 암모늄염 촉매를 이용한 Poly(GMA)에의 이산화탄소 직접 고정화)

  • Sung, Chung-Ki;Kim, Kyung-Hoon;Moon, Jeong-Yeol;Chun, Sung-Woo;Na, Suk-Eun;Park, Dae-Won
    • Applied Chemistry for Engineering
    • /
    • v.10 no.1
    • /
    • pp.129-134
    • /
    • 1999
  • This study is related to the investigation of the direct incorporation of $CO_2$ to polymer using quaternary ammonium salt catalysts. Quaternary ammonium salts showed good catalytic activity of $CO_2$ fixation in the synthesis of poly[(1,3-dioxolane-2-oxo-4-yl)methyl methacrylate] [poly(DOMA)] by the direct incorporation of $CO_2$ to poly(glycidyl methacrylate)[poly(GMA)]. Among the salts tested, the ones with higher alkyl chain length and with more nucleophilic counter anion showed higher catalytic activity. The yield of carbon dioxide addition increased with the reaction temperature. Kinetic study was carried out by measuring the variation of $CO_2$, pressure in a high pressure batch reactor. The reaction rate was first order to the concentration of poly(GMA) and $CO_2$, respectively. The rate constant was $0.69L/mol{\cdot}h$ and Henry's constant of $CO_2$ in DMSO at $80^{\circ}C$ was $6.8{\times}10^{-4}mol/L{\cdot}KPa$.

  • PDF

Morphological change of Pt/MoO3/SiO2 for the Synthesis of i-Butylene from n-Butene (N-Butene으로부터 i-Butylene 합성을 위한 Pt/MoO3/SiO2 촉매의 표면 구조 변화)

  • Kim, Jin Gul
    • Applied Chemistry for Engineering
    • /
    • v.7 no.5
    • /
    • pp.861-868
    • /
    • 1996
  • Skeletal isomerization reaction known as exothermic reaction shows possible maximum yield of i-butene from n-butene at $110^{\circ}C$ over $Pt/MoO_3/SiO_2$. Compared with conventional catalyst such as silica, zeolite, alumina etc., $Pt/MoO_3/SiO_2$ demonstrates higher yield while by-products except 2-butene do not form. Faster H spillover rate over $Pt/MoO_3/SiO_2$ is demonstrated via isothermal reduction experiment at $110^{\circ}C$ compared to the rate over $Pt/MoO_3/Al_2O_3$. Overall isomerization rates are proportional to higher spillover rates from Pt onto $MoO_3$ surface. The skeletal isomerization reaction is composed of two elementary steps. First, carbonium ion formation over Pt crystallites by H spillover. Second, carbenium ion formation over $MoO_3$ followed by formation of i-butene. Moreover, it is suggested that H spillover step from Pt surface onto $MoO_3$ is assumed to be the rate determining step and control the overall isomerization rate.

  • PDF

Characteristics of Degradation and Improvement of Properties with Conducting Polypyrrole (전도성 Polypyrrole의 분해 특성과 물성 개선)

  • Lee, Hong-Ki;Eom, Jung-Ho;Park, Soo-Gil;Shim, Mi-Ja;Kim, Sang-Wook;Lee, Ju-Seong
    • Applied Chemistry for Engineering
    • /
    • v.5 no.5
    • /
    • pp.764-771
    • /
    • 1994
  • Electrochemical synthesis of conductive polypyrrole films was carried out in nucleophilic solvent containing p-toluenesulfonic acid or bezensulfonic acid as supporting electrolyte and dopant. Also characteristics of degradation and improvement of mechanical properties were studied. The conductivity, tensile strength and elongation of the films obtained in dimethyformamide/p-toluenesulfonic acid had the highest value of 10-40S/cm, $25N/mm^2$ and 10%, respectively. The optimum condition of electrochemical synthesis was $2mA/cm^2$ for constant current method and 0.9V for constant potential method containing 0.5M pyrrole and 0.5M p-TSA. The obtained films showed good stability in air and electrode characteristics of secondary battery by reversibility in doping and undoping. The degradation process was 1st order reaction at various temeprature. The activation energy and rate constant of degradation reaction were $1.01JK^{-1}mol^{-1}$ and $3.1{\times}10^{-7}min^{-1}$ respectively at $25^{\circ}C$. For the improvement of mechanical properties, composition of polypyrrole films with various host polymer were investigated and increase of tensile strength and elongation was confirmed.

  • PDF

Effects of Acid Treatment of SAPO-34 on the Catalytic Lifetime and Light Olefin Selectivity during DTO Reaction (DTO 반응에서 촉매수명과 경질 올레핀 선택도에 미치는 SAPO-34의 산 처리 효과)

  • Choi, Ki-Hwan;Lee, Dong-Hee;Kim, Hyo-Sub;Park, Chu-Sik;Kim, Young-Ho
    • Applied Chemistry for Engineering
    • /
    • v.26 no.2
    • /
    • pp.217-223
    • /
    • 2015
  • Effects of the post-acid treatment of SAPO-34 sample by hydrochloric acid were investigated to enhance the catalytic performance in DTO reaction. Uniformly sized SAPO-34 samples with cubic-like morphology were prepared by hydrothermal method using TEAOH and DEA as the structure directing agents. It was modified in terms of the HCl concentration and treating time. As a result, the total surface area and micropore volume for the well modified samples increased and the total acid site was somewhat decreased along with the erosion of the external surface. Especially, the catalytic lifetime and light olefins selectivity for acid treated SAPO-0.2 M (3 h) samples were considerably enhanced compared with those of untreated SAPO-34 samples. It indicates that the deactivation by coke formation proceeds mainly at the pore entrance on the external surface. Therefore, the acid treatment was confirmed to be a simple method which can significantly improve the catalytic performance by modifying the external surface of SAPO-34 catalyst.

Influence of Functionalization of Silica with Ionic Liquid on Ethylene Polymerization Behavior of Supported Metallocene (실리카의 이온성 액체 기능화가 메탈로센 담지촉매의 에틸렌 중합 거동에 미치는 영향)

  • Lee, Jeong Suk;Lee, Chang Il;Ko, Young Soo
    • Applied Chemistry for Engineering
    • /
    • v.27 no.1
    • /
    • pp.86-91
    • /
    • 2016
  • Three amorphous silicas and SBA-15 were employed as supports, which were capable of confining ionic liquid (IL) and metallocene in the nanopore. Ionic liquid functionalized silica was prepared by the interaction between the chloride anions of 1,3-bis(cyanomethyl)imidazolium chloride and the surface OH groups. Metallocene and methylaluminoxane (MAO) were subsequently immobilized on the ionic liquid functionalized silica for ethylene polymerization. The metallocene supported on ionic liquid functionalized XPO-2412 and XPO-2410 having a larger pore diameter compared to SBA-15 showed higher activity than that of using supported catalyst without ionic liquid functionalization. However, the activity of metallocene supported on SBA-15 decreased after ionic liquid functionalization, suggesting that the diffusion of ethylene monomer and cocatalyst to the active site of nanopore was restricted during ethylene polymerization. This could be resulted from significant reduction of the pore diameter due to the immobilization of ionic liquid and $(n-BuCp)_2ZrCl_2$ and MAO. The effect on polymerization activity in accordance with the concentration of hydroxyl groups on the surface was also investigated. The polymerization activity increased as the concentration of hydroxyl groups on amorphous silica increased. The polymerization activities of metallocene supported on silica showed the similar trend after ionic liquid functionalization.

Removal of Ethylene Over KMnO4/Silica-alumina: Effect of Synthesis Methods and Reaction Temperatures (KMnO4/실리카-알루미나 상에서 에틸렌 제거: 합성 방법과 반응온도의 영향)

  • Cho, Min-Whee;Yoon, Songhun;Park, Yong-Ki;Choi, Won Choon;Kim, Hee Young;Park, Seungkyu;Lee, Chul Wee
    • Applied Chemistry for Engineering
    • /
    • v.20 no.4
    • /
    • pp.407-410
    • /
    • 2009
  • 18~19 wt% $KMnO_4$/$SiO_2-Al_2O_3$ with Si/Al = 1/5 and 1/10, and 20 wt% $KMnO_4$/$Al_2O_3$ were prepared by solvent evaporation method. Catalytic activity of ethylene abatement over those samples were evaluated and compared under the conditions of GHSV $1125h^{-1}$, ethylene gas (ethylene 0.2%, air 99.8%, relative humidity 50%) at 30, 40, 60 and $120^{\circ}C$ using a fixed-bed reactor. $KMnO_4$/$SiO_2-Al_2O_3$ was showed better performance than $KMnO_4$/$Al_2O_3$ by 170~210% at 30, $40^{\circ}C$, and by 60% at 60, $150^{\circ}C$, respectively.