• Title/Summary/Keyword: 화학합성

Search Result 4,107, Processing Time 0.041 seconds

The effects of microplastics on marine ecosystem and future research directions (미세플라스틱의 해양 생태계에 대한 영향과 향후 연구 방향)

  • Kim, Kanghee;Hwang, Junghye;Choi, Jin Soo;Heo, Yunwi;Park, June-Woo
    • Korean Journal of Environmental Biology
    • /
    • v.37 no.4
    • /
    • pp.625-639
    • /
    • 2019
  • Microplastics are one of the substances threatening the marine ecosystem. Here, we summarize the status of research on the effect of microplastics on marine life and suggest future research directions. Microplastics are synthetic polymeric compounds smaller than 5 mm and these materials released into the environment are not only physically small but do not decompose over time. Thus, they accumulate extensively on land, from the coast to the sea, and from the surface to the deep sea. Microplastic can be ingested and accumulated in marine life. Furthermore, the elution of chemicals added to plastic represents another risk. Microplastics accumulated in the ocean affect the growth, development, behavior, reproduction, and death of marine life. However, the properties of microplastics vary widely in size, material, shape, and other aspects and toxicity tests conducted on several properties of microplastics cannot represent the hazards of all other microplastics. It is necessary to evaluate the risks according to the types of microplastic, but due to their variety and the lack of uniformity in research results, it is difficult to compare and analyze the results of previous studies. Therefore, it is necessary to derive a standard test method to estimate the biological risk from different types of microplastics. In addition, while most of the previous studies were conducted mostly on spheres for the convenience of the experiments, they do not properly reflect the reality that fibers and fragments are the main forms of microplastics in the marine environment and in fish and shellfish. Furthermore, studies have been conducted on additives and POPs (persistent organic pollutants) in plastics, but little is known about their toxic effects on the body. The effects of microplastics on the marine ecosystems and humans could be identified in more detail if standard testing methods are developed, microplastics in the form of fibers and fragments rather than spheres are tested, and additives and POPs are analyzed. These investigations will allow us to identify the impact of microplastics on marine ecosystems and humans in more detail.

Laminin Expression in the Rat Lung Development (흰쥐 폐 발생시 Laminin의 발현에 대한 연구)

  • Chung, Ho-Sam;Park, Chul-Hong;Paik, Doo-Jin;Baik, Tae-Kyung;Kim, Won-Kyu;Youn, Jee-Hee;Suh, Yun-Kyung
    • Applied Microscopy
    • /
    • v.31 no.1
    • /
    • pp.71-83
    • /
    • 2001
  • Laminin, a kind of multidomain glycoproteins, is mainly localized in the basement membranes of various tissues. It is known that laminin plays an important part in mammalian lung morphogenesis. The authors have undertaken this study to investigate the changes in the distribution of laminin, and to find out cells which synthesize laminin during the organogenesis and differentiation of the lung. The fetal and neoantal rats (Sprague-Dawley strain) were used as experimental animals. The immunohisto-chemical methods were employed for detection of laminin within the developing lung tissue and the immunegold cytochemical methods were performed for detection of cells which synthesize laminin according to each stage of development. The results are as follows; 1. During fetal life, strong immunoreactivity for laminin is maintained in the basement membranes of the blood vessels and the bronchioles, the extracellular matrix of the mesenchyme, and basal lamina of the alveolar septum in the fetal rat lung. 2. After birth, laminin immunoreactivity at the alveolar septum is gradually reduced. 3. During fetal life, laminin is mainly detected within the cytoplasm of the mesenchymal cells, the endothelial cells of blood vessels and the fibroblasts in fetal rat lung. 4. According to the differentiation of type I and type II pneumocyte after birth, laminin is detected within cytoplasm of the type I pneumocytes, type II pneumocytes and fibroblasts. It is consequently suggested that laminin is largely expressed in the developing lung and laminin may be also synthesized by the type II pneumonocytes at early newborn stages.

  • PDF

Physicochemical Characteristics of Yanggaeng with Pear Juice and Dried Pear Powder Added (배즙과 배 건조분말을 첨가한 양갱의 물리화학적 특성)

  • Park, Yeon-Ok;Choi, Jin-Ho;Choi, Jang-Jeon;Yim, Sun-Hee;Lee, Han-Chan;Yoo, Maeng-Ja
    • Food Science and Preservation
    • /
    • v.18 no.5
    • /
    • pp.692-699
    • /
    • 2011
  • This study was conducted to investigate the physicochemical characteristics of yanggaeng prepared with pear juice and dried pear powder. The proximate composition and total polyphenol content, antioxidant activities, Hunter's color values, texture, sensory properties of pear yanggaeng variants [pear juice (PJ), pear juice and hot-air-dried pear powder (PJH), pear juice and freeze-dried pear powder (PJF) yanggaeng] were examined. The moisture content was highest (27.9%) in the control (C) yanggaeng, but the latter's energy and carbohydrate content were lower than in the pear yanggaeng variants. The differences between the pear yanggaeng variants were not significant.The total polyphenol content was highest in the 20.7 mg/100g PJF yanggaeng. The antioxidant activities of PJF yanggaeng were higher than those of the other pear yanggaeng varients. The Hunter color value results showed that the lightness (L) values were highest in C yanggaeng whereas the redness(a) and yellowness(b) values were highest in PJH yanggaeng. The springiness in texture was lowest in C yanggaeng and not significant in the others. The hardness and chewiness were highest in PJH and PJF yanggaeng, but adhesiveness was lowest therein. The results of the sensory test showed that PJF yanggaeng was the highest in flavor, color, taste, hardness, chewiness, and overal quality. Based on these results, it can be concluded that pear juice and freeze-dried pear powder yanggaeng has excellent physicochemical and antioxidant activities.

The High temperature stability limit of talc, $Mg_3Si_4O_{10}(OH)_2$ (활석 $Mg_3Si_4O_{10}(OH)_2$의 고온 안정영역에 관한 실험적 연구)

  • 조동수;김형식
    • The Journal of the Petrological Society of Korea
    • /
    • v.6 no.2
    • /
    • pp.123-132
    • /
    • 1997
  • In the system $MgO-SiO_2-H_2O$, Talc[$Mg_3Si_4O_{10}(OH)_2$] has been synthesized hydrothermally at 200 MPa, $600^{\circ}C$ from the oxide mixture of the bulk composition of talc. The oxide mixture of the bulk composition of anthophyllite$[Mg_7Si_8O_{22}(OH)2]$ converted to talc, enstatite $(MgSiO_3)$, quartz at 200 MPa, $750^{\circ}C$ with excess of $H_2O$. In low to medium pressure metramorphism, enstatite-talc assemblage is metastable relative to anthophyllite with the reaction talc + 4 enstatite=anthophyllite (Greenwood, 1963). The high temperature stability of talc is bounded with the dehydration reaction to anthophyllite rather than that to enstatite(Greenwood, 1963; Chernosky et al., 1985). Therefore our experiment result assemblage, enstatite-talc-quatz at 200 MPa, $750^{\circ}C$ from oxide mixture of bulk compostion of anthophyllite is metastable assemblage. The hydrothermal experiment performed at 41 to 243 MPa, 680 to $760^{\circ}C$ with the starting material composed of synthetic talc, enstatite and quartz. Talc or enstatite grows during the runs and no extra phases including anthophyllite nucleated. Based on the increase or decrease of the each phase from run products, one of the possible reactions is talc=3 enstatite+quartz+H_2O$. The reversal bracket of the reaction is 699 to $700^{\circ}C$ at 100 MPa. Talc is stable up to $740^{\circ}C$ at 200 MPa and enstatite grow at $680^{\circ}C$, 40 MPa and at $760^{\circ}C$, 250 MPa. Though the high temperature limit of talc around 200 MPa is bounded thermodynamically by the reaction, 7 talc=3 anthophyllite+4 quartz+4 H_2O$, talc persisted throughout the previous reaction up to the reaction, talc=3 enstatite+quartz+$H_2O$.

  • PDF

Antimicrobial Effect of Commercially Available Mouth Rinsing Solutions and Natural Herbal Extracts on Streptococcus mutans (시판되는 구강양치액과 천연한방 추출물의 Streptococcus mutans에 대한 항균효과 비교)

  • Kim, Sung-Im;Jeong, Moon-Jin;Ahn, Yong-Soon;Kim, A-Reum;Kim, Mi-Na;Lim, Do-Seon
    • Journal of dental hygiene science
    • /
    • v.15 no.3
    • /
    • pp.308-317
    • /
    • 2015
  • This study attempted to identify the possibility of natural herbal extracts as an alternative, preventive agent of caries by comparing antimicrobial activities between natural herbal extracts and mouth rinsing solutions against Streptococcus mutans. Natural herbal plants were extracted with distilled water and ethanol, respectively, to measure the minimum growth inhibitory concentration of S. mutans depending on concentration, and among which, solvents showing high antimicrobial activity were selected to compare their antibiotic effects with those of mouth rinsing solutions. Also, to determine the concentration of natural medicinal herbs that can be used safely in the oral cavity, the extracts were treated to the normal gingival fibroblast cells depending on concentration in order to determine its cytotoxicity using MTT. In terms of the minimum growth inhibition concentration, the growth inhibition of S. mutans was more excellent in the ethanol extract than in the distilled water. When the minimum growth inhibition concentration was compared, Psoralea corylifolia of natural herbal ethanol extracts, and Hexamedine (Bukwang Pharm., Korea) of mouth rinsing solutions inhibited growth of S. mutans at the lowest concentration. When the minimum bactericidal concentration was compared, P. corylifolia of natural herbal extracts, and Hexamedine and Garglin (Dong-A Pharm., Korea) of mouth rinsing solutions eliminated S. mutans at a low concentration. The human gingival fibroblast was treated with natural herbal ethanol extracts at the minimum growth inhibition concentration of 10, 39, and $78{\mu}g/ml$. As the result, no cytotoxicity was found. When this was treated at different minimum bactericidal concentrations, natural herbal ethanol extracts showed cytotoxicity except P. corylifolia.

Anti-inflammatory Effects of Inhalation of Injured Starfish Extracts on Formaldehyde Exposure (손상된 불가사리 추출물 흡입이 포름알데히드 노출에 의한 항염증 작용에 미치는 효과)

  • Hwang, Kyung Hee;Chang, Su Chan;Park, Jong Seok;Wahid, Fazli;Kim, You Young
    • Journal of Life Science
    • /
    • v.23 no.4
    • /
    • pp.501-509
    • /
    • 2013
  • Formaldehyde (FA) is widely used in industries, and it is an indoor and outdoor pollutant. Exposure to FA may cause inflammation and respiratory oxidative stress. Studies have demonstrated that FA can cause cancer in animal models. During the regeneration process of injured starfish (Asterina pectinifera), several changes have been observed in the expression of cytokines. In particular, higher TGF-${\beta}1$ expression has been detected in arm cut starfish extract after eight days. The current study was designed to elucidate the in-vitro and the in-vivo pharmacological effects of starfish extract on FA exposure. We investigated the protective effects of intact starfish extract and arm cut starfish extract on an IMR-90 cell line and on mouse lung injury in response to FA exposure. In the presence of FA, inhalation of the arm cut starfish extract was associated with more promising cell proliferation, TNF-${\alpha}$, NF-${\kappa}B$ decrement, and $I{\kappa}-B{\alpha}$ increment. In the experimental group, the pulmonary structure of the arm cut starfish extract-treated group in the presence of FA exposure was similar to the control group, whereas the FA exposure group showed damage to the pulmonary structure. Moreover, the arm cut starfish extracts was more effective than the intact starfish extracts in terms of the expression of TNF-${\alpha}$, NF-${\kappa}B$, $I{\kappa}-B{\alpha}$, and surfactant protein A. The results obtained in this study demonstrate that arm cut starfish extracts are more effective in protecting pulmonary structure and function against FA exposure than intact starfish extracts.

Funtional Components of Holophyte - Antioxidant substances in Salicornia herbacea L. - (염생식물의 기능 - 퉁퉁마디(S.hrebacea)의 항산화능 -)

  • Kim, Jong-Bae;Choe, Sun-Nam;Choe, Kyu-Hong;Lim, Seong-Han;Chai, Suk-Jin
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.19 no.2
    • /
    • pp.197-205
    • /
    • 2007
  • This study was to investigate the chemical content and antioxidant activity by the part of Salicornia herbacea as part of using Salicornia herbacea as materials of functional foods. On a basis of the materials, this study was to clarify the nutritional excellence, chemical composition, and antioxidant activity of Salicornia herbacea. From the result of this research above, it may be summed up as follows.The Salicornia herbacea used in the experiment contained the moisture and crude fiber in the stalks a lot, and the protein, fat, and ash in the branches more. As to the content of free amino acid, the content of arginine took in the branches and stems most. Then, it contained threonine, glycine, tryptophan, valine, isoleucine, and lysine, etc. in the branches a lot. Also, it contained threonine, glutamic acid, tyrosine tryptophan alanine, and isoleucine in the stalks a lot. It was shown to be contained of essential amino acids like isoleucine, leucine, threonine, valine, methionine, lysine, phenylalanine, and tryptophan in the branches and steams more. As to the content of fatty acid in Salicornia herbacea, it found out that it contained the unsaturated fatty acid more than the saturated fatty acid. It took the content of eicosenoic acid(20:1) in the branches and stalks most. And then, it contained linoleic acid(18:2), pehtadecenoic acid(15:1), palmitic acid(16:0), and oleic acid(18:1), etc. a lot. As to the antioxidant activity in Salicornia herbacea using the DPPH radical, it was shown to be existed in the largest antioxidant activity when the concentration of methanolextract from Salicornia herbacea was 1 mM. There was higher antioxidant activity than 100 ppm BHT used as control plot when the concentration of methanol extract from the stalks was $100{\mu}M$. From the result of experiment above, Salicornia herbacea contained the essential amino acid a lot. It will be possible to be used as natural antioxidants because it has excellent antioxidant effect. Therefore, this researcher concludes that it will be available in using it as materials of functional foods.

Inhibitor activity of Ulmus davidiana Planch(UD) Herbal Acupuncture Solution on Cathepsin having bone resorption activity (유근피 약침액이 골재흡수 중 Cathepsin에 대한 억제 작용)

  • Kim, Geun-sam;Jo, Hyun-seog;Hwang, Min-seob;Kim, Kap-sung;Lee, Seung-deok
    • Journal of Acupuncture Research
    • /
    • v.22 no.3
    • /
    • pp.1-12
    • /
    • 2005
  • It was clarified that ethanol extract herb-acupuncture solution (EE-UD) and hydrotherapy herb-acupuncture solution (WE-UD) in Ulmus davidiana Planch (Ulmaceae), are the excellent inhibitors of cathepsin K and L. WE-UD inhibited cathepsin K when IC50 value was 5.32 ${\square}g$/ml, and suppressed cathepsin L when IC50 value was 6.34 ${\square}g$/ml. However, EE-UD indicated the activity of inhibiting cathepsin K and L in the level of 1.45 ${\square}g$/ml and 2.43 ${\square}g$/ml, thus it showed more significance than WE-UD. It could be observed that EE-VD is an excellent inhibitor to cathepsin K with Ki value of 0.8 ${\square}g$/ml. This activity is increased by 10-fold even in the analytical experiment when having operations like glutathione in pH 7.0. Also, this supports the mixture of GSH thiolate anion, thus it was thought that this increase in effectiveness is probably attributable to the enhanced chemical function in the combinations of herb-acupuncture solution towards a place of activity in enzyme. WE-UD showed the time-dependent inhibiting property, thus it allowed to know the disunion and the compounding speed in constant cathepsin K during the process of experiment. Finally, EE-UD was proved to suppress the absorbent bone ash in the experiment related to osteoclast in rats for test, and to the bone in rodent. It was proved that WE-UD has the effect of inhibiting the protease in cathepsin K and L, and in collagen of bone. These results strongly suggest that it is effective in preventing the progress of bone damage, which was induced due to cathepsin K. Also, it obtained the conclusion that it is effective to the reabsorption activity of bone in the bone marrow cells.

  • PDF

Antibacterial Effect of Colloidal Silver on Some Oral Bacteria (콜로이드상 은이 수종의 구강 세균에 미치는 항균 효과)

  • Kang, Kee-Hyun;Lee, Kyong-Eun
    • Journal of Oral Medicine and Pain
    • /
    • v.30 no.1
    • /
    • pp.1-14
    • /
    • 2005
  • The maintenance of good oral health in adults is often hindered by oral malodor and periodontal diseases which are known to be commonly caused by some species of Gram-negative anaerobic bacteria, with low sensitivity to common synthetic antibiotics or antibacterial chemical agents. Therefore the development of a nonharmful natural antibacterial oral rinsing remedy against the causative bacteria is thought to be very important. The purpose of this study is to obtain the basic data for development of a nonharmful natural antibacterial oral rinsing remedy using colloidal silver. The author applied colloidal silver solution with concentration of 10, 30, 50, 80 ppm to some strains in species of Prevotella intermedia, Porphyromonas gingivalis, Fusobaterium nucleatum, and evaluated the effects of colloidal silver on the growth of experimental bacterial strains in aspects of minimal inhibitory concentration (MIC), minimal bactericidal concentration (MBC) and growth pattern after incubation for 24, 48, 72 hours. The obtained results were as follows: MIC of colloidal silver solution against experimental strains was 30 ppm in P. intermedia, 10 or 30 ppm in P. gingivalis, and 30, 50, or 80 ppm in F. nucleatum. And MBC of colloidal silver solution against experimental strains was 30 ppm in P. intermedia, 30 or 50 ppm in P. gingivalis, 30 or 80 ppm in F. nucleatum. Therefore it was concluded that colloidal silver exhibited bacteriostatic or/and bacteriocidal effects against some experimental strain. And the inhibition of growth of experimental strains were markedly or considerably exhibited under 30 ppm$\sim$50 ppm of colloidal silver solution for 48 hours$\sim$72 hours in P. intermedia, 10 ppm$\sim$30 ppm for 24 hours$\sim$48 hours in P. gingivalis, 30 ppm for 24 hours in F. nucleatum. These results indicate that the colloidal silver inhibited effectively the growth of some species of Gram-negative anaerobic bacteria by exhibition of bacteriostatic or/and bacteriocidal effects, and can be used as a possible major ingredient of the nonharmful natural antibacterial oral rinsing remedy to oral malodor and periodontal diseases.

Development and Application of a Novel Mammalian Cell Culture System for the Biocompatibility and Toxicity of Polymer Films and Metal Plate Biomaterials (고분자필름과 금속막 의료소재에 대한 생체적합성 및 독성 평가를 위한 새로운 세포배양시스템의 개발 및 적용)

  • Kwak, Moon Hwa;Yun, Woo Bin;Kim, Ji Eun;Sung, Ji Eun;Lee, Hyun Ah;Seo, Eun Ji;Nam, Gug Il;Jung, Young Jin;Hwang, Dae Youn
    • Journal of Life Science
    • /
    • v.26 no.6
    • /
    • pp.633-639
    • /
    • 2016
  • Biomaterials including polymer, metal, ceramic, and composite have been widely applied for medical uses as medical fibers, artificial blood vessels, artificial joints, implants, soft tissue, and plastic surgery materials owing to their physicochemical properties. However, the biocompatibility and toxicity for film- and plate-form biomaterials is difficult to measure in mammalian cells because there is no appropriate incubation system. To solve these problems, we developed a novel mammalian cell culture system consisting of a silicone ring, top panel, and bottom panel and we applied two polymer films (PF) and one metal plate (MP). This system was based on the principal of sandwiching a test sample between the top panel and the bottom panel. Following the assembly of the culture system, SK-MEL-2 cells were seeded onto Styela Clava Tunic (SCT)-PF, NaHCO3-added SCT (SCTN)-PF, and magnesium MP (MMP) and incubated at 37℃ for 24 hr and 48 hr. An MTT assay revealed that cell viability was maintained at a normal level in the SCT-PF culture group at 24 or 48 hr, although it rapidly decreased in the SCTN-PF culture group at 48 hr. Furthermore, the cell viability in the MMP culture group was very similar to that of the control group after incubation for 24 hr and 48 hr. Together, these results suggest the sandwich-type mammalian culture system developed here has the potential for the evaluation of the biocompatibility and toxicity of cells against PF- and MP-form biomaterials.