• Title/Summary/Keyword: 화학처리기법

Search Result 159, Processing Time 0.027 seconds

Development and Application of an In Situ Technology to Treat Various Soil and Groundwater Contaminants

  • Goltz, Mark N.
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.10a
    • /
    • pp.89-110
    • /
    • 2003
  • The limitations of conventional soil and groundwater contamination remediation technologies have motivated a search for innovative technologies; particularly in situ technologies that do not require extraction of contaminants from the subsurface. All engineered in situ remediation systems require that the contaminant be mixed with a remedial compound. Horizontal flow treatment wells (HFTWs), an innovative technology that consists of a pair of dual-screened treatment wells, were used at a trichloroethylene (TCE) contaminated site to efficiently achieve this mixing of contaminant and remedial compound in order to effect in situ bioremediation (McCarty et al., 1998). In this paper, the potential of HFTWs to treat chlorinated aliphatic hydrocarbons (CAHs) as well as other soil and groundwater contaminants of concern, such as nitroaromatic compounds (NACs), perchlorate, and methyl-tert-butyl ether (MTBE), is examined. Through a combination of laboratory studies, model analyses, and field evaluations, the effectiveness of this innovative technology to manage these contaminants is investigated.

  • PDF

Study of Polymor Properties Prediction Using Nonlinear SEM Based on Gaussian Process Regression (가우시안 프로세서 회귀 기반의 비선형 구조방정식을 활용한 고분자 물성거동 예측 연구)

  • Moon Kyung-Yeol;Park Kun-Wook
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.13 no.1
    • /
    • pp.1-9
    • /
    • 2024
  • In the development and mass production of polymers, there are many uncontrollable variables. Even small changes in chemical composition, structure, and processing conditions can lead to large variations in properties. Therefore, Traditional linear modeling techniques that assume a general environment often produce significant errors when applied to field data. In this study, we propose a new modeling method (GPR-SEM) that combines Structural Equation Modeling (SEM) and Gaussian Process Regression (GPR) to study the Friction-Coefficient and Flexural-Strength properties of Polyacetal resin, an engineering plastic, in order to meet the recent trend of using plastics in industrial drive components. And we also consider the possibility of using it for materials modeling with nonlinearity.

A Contact Angle Measurement Method using Canny Edge Detect Algorithm (캐니 에지 검출 알고리즘을 이용한 접촉각 측정 기법)

  • Yoon, Yeo-Been;Song, Jeo;Jeon, Jin-Hwan;Lee, Sang-Moon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2016.01a
    • /
    • pp.251-252
    • /
    • 2016
  • 접촉각을 이용한 표면에너지 측정방법은 부품소재분야를 비롯한 폴리머 화학제품 등에서 널리 사용되고 있다. 그중 측정할 대상의 고체 표면에 액체 방울을 떨어뜨리고 측면 접점 방향에 대한 영상을 촬영하여 고체 표면과 액체 방울이 이루고 있는 각도를 측정하는 방식을 가장 많이 사용하고 있다. 본 논문에서는 기존 접촉각 측정기의 배경과 액체 방울 사이의 명암 차를 이용하여 경계선을 찾는 Sessile-drop 영상처리 기법을 보완 및 개선하기 위하여 캐니 에지 검출 알고리즘을 적용하였다.

  • PDF

Current Status of Hyperspectral Remote Sensing: Principle, Data Processing Techniques, and Applications (초분광 원격탐사의 특성, 처리기법 및 활용 현용)

  • Kim Sun-Hwa;Ma Jung-Rim;Kook Min-Jung;Lee Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.4
    • /
    • pp.341-369
    • /
    • 2005
  • Hyperspectral images have emerged as a new and promising remote sensing data that can overcome the limitations of existing optical image data. This study was designed to provide a comprehensive review on definition, data processing methods, and applications of hyperspectral data. Various types of airborne, spaceborne, and field hyperspectral image sensors were surveyed from the available literatures and internet search. To understand the current status of hyperspectral remote sensing technology and research development, we collected several hundreds research papers from international journals (IEEE Transactions on Geoscience and Remote Sensing, International Journal of Remote Sensing, Remote Sensing of Environment and AVIRIS Workshop Proceedings), and categorized them by sensor types, data processing techniques, and applications. Although several hyperspectral sensors have been developing, AVIRIS has been a primary data source that the most hyperspectral remote sensing researches were relied on. Since hyperspectral data have very large data volume with many spectral bands, several data processing techniques that are particularly oriented to hyperspectral data have been developed. Although atmospheric correction, spectral mixture analysis, and spectral feature extraction are among those processing techniques, they are still in experimental stage and need further refinement until the fully operational adaptation. Geology and mineral exploration were major application in early stage of hyperspectral sensing because of the distinct spectral features of rock and minerals that could be easily observed with hyperspectral data. The applications of hyperspectral sensing have been expanding to vegetation, water resources, and military areas where the multispectral sensing was not very effective to extract necessary information.

Modeling of Electrical and Chemical Characteristics During the Electro]kinetic Remediation of Contaminated Soil by Heavy Metal (중금속 오염토의 Electrokinetic 정화시 토체의 전기화학적 특성의 모델링)

  • 한상재;김수삼;조용실
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.1
    • /
    • pp.49-57
    • /
    • 2002
  • During the electrokinetic remediation, direct current applied to a soil-water-electrolyte system derives the variations of fluid transport phenomena in soil-water system and soil-water interface characteristics. Therefore, these variations affect the electrokinetic reaction. In this study, lab-scale electrokinetic remediation tests were performed to characterize the electrical and chemical parameters variation in soil. During the test, voltage gradient, electrical current, zeta potential and pH variations were measured. On the basis of experimental results, computer modeling techniques predicting the variations of these parameters are suggested.

Modified Chi-square Method for Prediction of Unannotated Proteins from Protein Interaction Network (단백질 상호작용 네트워크에서 단백질 기능 예측을 위한 Modified Chi-square 기법)

  • Tae-Ho Kang;Jae-Soo Yoo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2008.11a
    • /
    • pp.785-787
    • /
    • 2008
  • 생명체의 생명현상을 주관하는 각종 화학반응들은 단백질이 관여하고 있다. 단백질은 일정한 질서에 따라 서로 조립되기도 하고, 기능적으로 연관돼 네트워크를 이루고 있다. 이 네트워크를 구성하는 단백질-단백질 상호작용은 단백질의 기능과 밀접하게 관련되어 있다. 즉, 상호작용하는 단백질은 같은 기능을 수행할 가능성이 크다. 이러한 사실은 단백질-단백질 상호작용을 통해 기능이 알려지지 않은 미지 단백질의 기능을 예측할 수 있게 한다. 대표적인 연구로는 이웃 노드에 존재하는 기능분포를 이용하는 이웃노드 카운트(Neighborhood Counting)방식과 특정 기능의 나타날 빈도를 계산하여 기능을 예측하는 카이-제곱(Chi-Square)방식 등이 있다. 본 논문에서는 단백질 기능 예측의 정확성을 높이기 위해 이들 두 방식의 장점을 취합한 보완된 카이-제곱 방식을 제안한다. 그리고 다양한 단백질 상호작용 네트워크 데이터를 비교 분석하여 보완된 카이-제곱 방식이 기능 예측의 정확성이 높음을 증명한다.

Effect of Hydrogen Recirculation on the Performance of Polymer Electrolyte Membrane Fuel Cell with Dead Ended Mode (Dead ended 모드에서 수소 재순환이 고분자전해질연료전지의 성능에 미치는 영향)

  • Kim, Junseob;Kim, Junbom
    • Korean Chemical Engineering Research
    • /
    • v.57 no.4
    • /
    • pp.531-538
    • /
    • 2019
  • As the performance of PEMFC has been improved, the water and heat generated by reaction have increased so, the water and heat management of PEMFC is becoming more important. In this study, hydrogen recirculation was applied as the water management technique and the effect of recirculation flow rate, purge interval and duration on the performance of PEMFC was investigated. Anode pressure, fuel humidity and utilization, water discharge amount was measured to check the effect of purge conditions on performance. As the recirculation flow rate has increased, the performance of PEMFC became lower due to decrease of anode outlet pressure. According to the purge conditions, instantaneous voltage drop has occurred because of accumulated water. In frequent purge conditions, the performance of PEMFC gradually decreased due to fuel humidity control failure. Stable performance and high fuel utilization was achieved on this work by analyzing the effect of purge conditions.

Visualization and 3D Numerical Analysis of the Circulation Flow of the Neutron Moderator in a Heavy-Water Nuclear Reactor (가압중수형 원자로의 중성자 감속재 순환 유동가시화와 삼차원 전산해석)

  • Eom, Tae-Kwang;Lee, Jae-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.2
    • /
    • pp.189-196
    • /
    • 2012
  • The heavy moderator acts as the ultimate heat-sink in an operating CANDU reactor. HUKINS has been developed to investigate moderator flow patterns. HUKINS consists of a 38.4-mm-thick cylindrical shell with a 0.95 m inner diameter and 88 sus-tubes that produce a total heat of 10 kW. A chemical visualization method was selected to estimate the occurrence of typical moderator flow patterns. Momentum-dominated flow, mixed flow, and buoyancy-dominated flow are detected under conditions of a heat load of 7.7 kW and input mass flow rates of 4, 7, and 11 L/min. The experimental results are similar to the results of a CFD simulation that consisted of approximately 1.9 million grids and was conducted using the k-${\varepsilon}$ turbulence model. Therefore, both the present experiments and simulations using HUKINS, a 1/8-scale model, represent all three important flow patterns expected in the real CANDU6 reference reactor. Thus, it has been demonstrated that HUKINS could be useful in the study of CANDU6 moderator circulation.

Design of a Wastewater Treatment Plant Upgrading to Advanced Nutrient Removal Treatment Using Modeling Methodology and Multivariate Statistical Analysis for Process Optimization (하수처리장의 고도처리 upgrading 설계와 공정 최적화를 위한 다변량 통계분석)

  • Kim, MinJeong;Kim, MinHan;Kim, YongSu;Yoo, ChangKyoo
    • Korean Chemical Engineering Research
    • /
    • v.48 no.5
    • /
    • pp.589-597
    • /
    • 2010
  • Strengthening the regulation standard of biological nutrient in wastewater treatment plant(WWTP), the necessity of repair of WWTP which is operated in conventional activated sludge process to advanced nutrient removal treatment is increased. However, in full-scale wastewater treatment system, it is not easy to fine the optimized operational condition of the advanced nutrient removal treatment through experiment due to the complex response of various influent conditions and operational conditions. Therefore, in this study, an upgrading design of conventional activated sludge process to advanced nutrient removal process using the modeling and simulation method based on activated sludge model(ASMs) is executed. And a design optimization of advanced treatment process using the response surface method(RSM) is carried out for statistical and systematic approach. In addition, for the operational optimization of full-scale WWTP, a correct analysis about kinetic variables of wastewater treatment is necessary. In this study, through partial least square(PLS) analysis which is one of the multivariable statistical analysis methods, a correlation between the kinetic variables of wastewater treatment system is comprehended, and the most effective variables to the advanced treatment operation result is deducted. Through this study, the methodology for upgrading design and operational optimization of advanced treatment process is provided, and an efficient repair of WWTP to advanced treatment can be expected reducing the design time and costs.

Numerical Study on Behavior of Underground Freshwater Body with Variation of Freshwater Injection in a Coastal Aquifer (염수대수층 내 담수 주입 변화에 따른 지하 담수체 거동에 대한 수치모의)

  • Jeong, Woo Chang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.249-249
    • /
    • 2015
  • ASR(Aquifer Storage Recharge) 또는 ASTR(Aquifer Storage Transfer Recharge)과 같은 직접적인 지하수 인공함양기법은 대수층을 활용하여 수자원을 공급하고 관리하기 위한 적극적인 방안으로 고려될 수 있다. 이 중 ASTR 기법은 대규모 충적층이 발달한 강변 또는 하구에서 저류지 수생식물의 정화작용과 층적층의 물리/화학/생물학적 여과 기능을 활용하여 양질의 상수원수를 확보할 수 있는 기법이며, 수질이 나쁜 하천수를 직접 취수하여 정수처리하는 것에 비해 정수비용이 상대적으로 적게 들어 투자대비 경제적인 상수원수 확보기술이라 할 수 있다. 본 연구에서는 하구에 염수 대수층이 위치해 있다고 가정하였으며, 이러한 염수 대수층 내에 담수 주입 변화에 따른 지하 담수체의 거동을 4가지 시나리오에 따라 모의 및 분석을 통해 조사하였다. 염수 대수층 내에서 8개의 주입정과 1개의 양수정이 설치되어 있다고 가정하였으며, 주입정은 동심원 상에 등간격으로 위치해 있으며, 양수정은 동심원 중에 위치해 있다고 가정하였다. 본 연구에서 구성된 시나리오로 첫 번째는 주입정 8개 모두에서 동시에 주입되며, 1개의 양수정을 통해 양수되는 것이며, 두 번째는 7개의 주입정에 주입 그리고 1개의 주입정 폐쇄, 세 번째는 6개 주입정에 주입 및 양수정과 서로 마주보는 2개 주입정 폐쇄, 그리고 마지막으로 6개 주입정에 주입 및 서로 이웃한 2개 주입정 폐쇄이다.

  • PDF