• Title/Summary/Keyword: 화학적 풍화

Search Result 269, Processing Time 0.033 seconds

Characterization on the Behavior of Heavy Metals and Arsenic in the Weathered Tailings of Songcheon Mine (송천광산의 풍화광미 내 중금속 및 비소 거동 특성)

  • Lee, Woo-Chun;Kim, Young-Ho;Cho, Hyen-Goo;Kim, Soon-Oh
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.2
    • /
    • pp.125-139
    • /
    • 2010
  • Behavior of heavy metals and arsenic in the tailings of Songcheon Au-Ag mine was characterized via both mineralogical and geochemical methods. Mineral composition of the tailings was investigated by X-ray diffractometry, energy-dispersive spectroscopy, and electron probe micro-analyzer (EPMA) and total concentrations of heavy metals and arsenic and their chemical forms were analyzed by total digestion of aqua regia and sequential extraction method, respectively. The results of mineralogical study indicate that the tailings included mineral particles of resinous shape mainly consisting of galena, sphalerite, pyrite, quartz, and scorodite, and specifically socordite was identified in the form of matrix. EPMA quantitative analyses were performed to evaluate the weatherability of each mineral, and the results suggest that it decreased in the sequence of arsenopyrite > galena > sphalerite > pyrite. The weathering pattern of galena was observed to show distinctive zonal structure consisting of secondary minerals such as anglesite and beudantite. In addition, almost all of arsenopyrite has been altered to scorodite existing asmatrix and galena, sphalerite, and pyrite which have lower weatherability than arsenopyrite were identified within the matrix of scorodite. During the process of alteration of arsenopyrite into scorodite, it is likely that a portion of arsenic was lixiviated and caused a great deal of detrimental effects to surrounding environment. The results of EPMA quantitative analyses verify that the stability of scorodite was relatively high and this stable scorodite has restrained the weathering of other primary minerals within tailings as a result of its coating of mineral surfaces. For this reason, Songcheon tailings show the characteristics of the first weathering stage, although they have been exposed to the surface environment for a long time. Based on the overall results of mineralogical and geochemical studies undertaken in this research, if the tailings are kept to be exposed to the surface environment and the weathering process is continuous, not only hazardous heavy metals, such as lead and arsenic seem to be significantly leached out because their larger portions are being partitioned in weakly-bound (highly-mobile) fractions, but the potential of arsenic leaching is likely to be high as the stability of scorodite is gradually decreased. Consequently, it is speculated that the environmental hazard of Songcheon mine is significantly high.

Origin and natural Environment of the Mujechi Highmor Peat Bog Cheongjoksan (정족산 무제치 늪의 성인과 자연환경)

  • 최기룡
    • The Korean Journal of Quaternary Research
    • /
    • v.12 no.1
    • /
    • pp.63-76
    • /
    • 1998
  • 한반도는 산악지형이 우세하기 때문에 늪지나 호수의 발달이 불량하다. 현재 소규모 의 자연늪지는 낙동가 하류지역에 분포하며 동해안을 따라 일부 해안지역에 발달하여 있을 뿐이다. 고산지역에도 소규모의 늪지가 최근에 발견되었는데 그중에서도 무제치늪이 국내의 가장 남동쪽에 위치하고 있다. 정족산 정상부를 향하여 4개의 늪지가 차례대로 발달하여있 는데 이들의 성인은 온도차이에 의한 기계적풍화와 암석 차이에 의한 화학적 풍화적작용의 결과로 해석된다, 이들의 형성시기는 제 2늪의 습원퇴적이 가장 오래되 지층으로서 100~ 105cm 심도에서 탄소동위원소 연대측정으로 5,960$\pm$110yr BP. 의결과를 보이고 있드며 제 1늪의 습원 퇴적은 지표로부터 64~69cm 심도의 토탄층 최하부 부분에서 1,785$\pm$120yr BP. 의 연대측정 결과를 확인하였다.

A Study on the Conservation State and Plans for Stone Cultural Properties in the Unjusa Temple, Korea (운주사 석조문화재의 보존상태와 보존방안에 대한 연구)

  • Sa-Duk, Kim;Chan-Hee, Lee;Seok-Won, Choi;Eun-Jeong, Shin
    • Korean Journal of Heritage: History & Science
    • /
    • v.37
    • /
    • pp.285-307
    • /
    • 2004
  • Synthesize and examine petrological characteristic and geochemical characteristic by weathering formation of rock and progress of weathering laying stress on stone cultural properties of Unjusa temple of Chonnam Hwasun county site in this research. Examine closely weathering element that influence mechanical, chemical, mineralogical and physical weathering of rocks that accomplish stone cultural properties and these do quantification, wish to utilize by a basic knowledge for conservation scientific research of stone cultural properties by these result. Enforced component analysis of rock and mineralogical survey about 18 samples (pyroclastic tuff; 7, ash tuff; 4, granite ; 4, granitic gneiss; 3) all to search petrological characteristic and geochemical characteristic by weathering of Unjusa temple precinct stone cultural properties and recorded deterioration degree about each stone cultural properties observing naked eye. Major rock that constitution Unjusa temple one great geological features has strike of N30-40W and dip of 10-20NE being pyroclastic tuff. This pyroclastic tuff is ranging very extensively laying center on Unjusa temple and stone cultural properties of precinct is modeled by this pyroclastic tuff. Stone cultural propertieses of present Unjusa temple precinct are accomplishing structural imbalance with serious crack, and because weathering of rock with serious biological pollution is gone fairly, rubble break away and weathering and deterioration phenomenon such as fall off of a particle of mineral are appearing extremely. Also, a piece of iron and cement mortar of stone cultural properties everywhere are forming precipitate of reddish brown and light gray being oxidized. About these stone cultural properties, most stone cultural propertieses show SD(severe damage) to MD(moderate damage) as result that record Deterioration degree. X-ray diffraction analysis result samples of each rock are consisted of mineral of quartz, orthoclase,plagioclase, calcite, magnetite etc. Quartz and feldspar alterated extremely in a microscopic analysis, and biotite that show crystalline form of anhedral shows state that become chloritization that is secondary weathering mineral being weathered. Also, see that show iron precipitate of reddish brown to crack zone of tuff everywhere preview rock that weathering is gone deep. Tuffs that accomplish stone cultural properties of study area is illustrated to field of Subalkaline and Peraluminous, $SiO_2$(wt.%) extent of samples pyroclastic tuff 70.08-73.69, ash tuff extent of 70.26-78.42 show. In calculate Chemical Index of Alteration(CIA) and Weathering Potential Index(WPI) about major elements extent of CIA pyroclastic tuff 55.05-60.75, ash tuff 52.10-58.70, granite 49.49-51.06 granitic gneiss shows value of 53.25-67.14 and these have high value gneiss and tuffs. WPI previews that is see as thing which is illustrated being approximated in 0 lines and 0 lines low samples of tuffs and gneiss is receiving esaily weathering process as appear in CIA. As clay mineral of smectite, zeolite that is secondary weathering produce of rock as result that pick powdering of rock and clothing material of stone cultural properties observed by scanning electron micrographs (SEM). And roots of lichen and spore of hyphae that is weathering element are observed together. This rock deep organism being coating to add mechanical weathering process of stone cultural properties do, and is assumed that change the clay mineral is gone fairly in stone cultural properties with these. As the weathering of rocks is under a serious condition, the damage by the natural environment such as rain, wind, trees and the ground is accelerated. As a counter-measure, the first necessary thing is to build the ground environment about protecting water invasion by making the drainage and checking the surrounding environment. The second thing are building hardening and extirpation process that strengthens the rock, dealing biologically by reducing lichens, and sticking crevice part restoration using synthetic resin. Moreover, it is assumed to be desirable to build the protection facility that can block wind, sunlight, and rain which are the cause of the weathering, and that goes well with the surrounding environment.

Study on the Illite Modification for Removal of Radioactive Cesium in Water Environment near Nuclear Facilities (원자력 시설 인근 수계에서 방사성 세슘 제거를 위한 일라이트 개질 연구)

  • Hwang, Jeonghwan;Choung, Sungwook;Shin, Woosik;Han, Weon Shik
    • Economic and Environmental Geology
    • /
    • v.51 no.2
    • /
    • pp.113-120
    • /
    • 2018
  • Radioactive cesium($^{137}Cs$) can be released into the environment through severe nuclear accidents such as the Chernobyl and Fukushima, The $^{137}Cs$ is one of major monitoring radionuclides due to its chemical toxicity, ${\gamma}$ radiation and long half-life($t_{1/2}=30.2yrs$). It has been known well that illite adsorb selectively and strongly the cesium due to frayed edge sites. The quantity of the FES in the illite could be controlled by weathering processes. Therefore, this study was modified illite samples through artificial weathering in the laboratory to increase sorption efficiency for cesium. Abundant interlayer cations(i.e., K, Ca) were eluted within 1 day, while Si and Al were gradually released from the crystal structure. In addition, broad peaks of XRD indicated the occurrence of chemical weathering. The cesium sorption distribution coefficients increased up to approximately 2 times after the weathering. These results suggested that sorption capacity of illite could be enhanced for cesium through artificial weathering under low temperature.

Geological Characteristics of a Wetland in Mt. Geumjeong (금정산 산지습지의 지질학적 특성)

  • Cha, Eun-Jee;Hamm, Se-Yeong;Kim, Hyun-Ji;Lee, Jeong-Hwan;Cheong, Jae-Yeol;Ok, Soon-Il
    • Journal of Wetlands Research
    • /
    • v.12 no.2
    • /
    • pp.1-12
    • /
    • 2010
  • This study examined geological characteristics of a wetland in Mountain Geumjeong in Busan Metropolitan City. Field survey and laboratory tests were performed to identify topographic features, geological and structural geological characteristics, rock strength along the distance from the wetland, soil profile in the wetland, and chemical property of the wetland soil. The bedrock of the wetland consists of hornblende granite. Hornblende granite and rhyolitic rock around the wetland have the joints with strikes of N-S, E-W, and NE-SW directions and with higher dips greater than $60^{\circ}$. Lower rock strength and higher weathering grades take place towards the wetlands. According to X-ray diffraction analysis of wetland soil samples, kaolinite, montmorillonite, and gibbsite appear which demonstrate weathered products of feldspars in the hornblende granite. The soil profile in the wetland comprises O, A, B, and C horizons from the land surface. The contents of the organic matters decrease from shallow parts to deeper parts of the soil profile. In addition, $K^+$ and $Na^+$ originating from the weathering of feldspars are dominant components among inorganic ions in the wetland soil.

Interpretation of Physical Weathering and Deterioration Mechanism for Thermal Altered Pelitic Rocks: Ulju Cheonjeon-ri Petroglyph (열변질 이질암의 물리적 풍화작용과 손상메커니즘 해석: 울주 천전리 각석)

  • Chan Hee Lee;Yu Gun Chun
    • Economic and Environmental Geology
    • /
    • v.56 no.6
    • /
    • pp.629-646
    • /
    • 2023
  • Host rock of Cheonjeon-ri petroglyph is shale belonging to the Daegu Formation of Cretaceous Gyeongsang Supergroup. The rocks were hornfelsified by thermal alteration, and shows high density and hardness. The petroglyph forms weathered zone with certain depth, and has difference in mineral and chemical composition from the unweathered zone. As the physical deterioration evaluations, most of cracks on the surface appear parallel to the bedding, and are concentrated in the upper part with relatively low density. Breakout parts are occurred in the upper and lower parts of the petroglyph, accounting for 6.0% of the total area and occurs to have been created by the wedging action of cracks crossing. The first exfoliation parts occupying the surface were 23.8% of the total area, the second exfoliations covered with 9.3%, and the exfoliation parts with three or more times were calculated as 3.4%. It is interpreted that this is not due to natural weathering, and the thermal shock caused by the cremation custom here in the past. As the ultrasonic properties, the petroglyph indicates highly strength in the horizontal direction parallel to bedding, and the area with little physical damage recorded mean of 4,684 m/s, but the area with severe cracks and exfoliations showed difference from 2,597 to 3,382 m/s on average. Physical deterioration to the Cheonjeon-ri petroglyph occurred to influence by repeated weathering, which caused the rock surface to become more severe than the inside and the binding force of minerals to weaken. Therefore, it can be understood that when greater stress occurs in the weathered zone than in the unweathered zone, the relatively weathered surface loses its support and exfoliation occurs.

Characteristics of Chemical Compositions and Weathering of Glass Beads excavated from Andong Tumulus in Gildu-ri, Goheung (고흥 길두리 안동고분 출토 유리구슬의 화학조성 및 풍화특성)

  • Han, Min-Su;Lee, Han-Hyoung;Moon, Eun-Jung
    • Journal of Conservation Science
    • /
    • v.27 no.3
    • /
    • pp.323-332
    • /
    • 2011
  • Microtexture and components of 7 glass bead fragments excavated from Andong tumulus in Gildu-ri, Goheung have been analyzed to determine the characteristics of their weathered condition as well as chemical compositions. Firstly, status of microtexture shows that there is a large quantity of pollutants which were presumably transferred from the buried environment into the surface and the gap of the cracks. The examination has displayed that there are less amount of alkali metal components such as sodium (Na) and potasium (K) in the gap of the cracks than on the surface. The chemical compositions analysis has confirmed that two samples belongs to potash glass group ($K_2O-SiO_2$), four to soda glass group ($Na_2O-SiO_2$), and one to the mixed alkali glass group. Chromophoric elements of the glass varies by different colours: blue and navy are cobalt (Co); greenish blue is copper (Cu) and iron (Fe); and light brown is Fe respectively. Such kind of scientific analysis of the excavated glass beads will contribute to the understanding of interchange between various local cultures and arts within the southwest region of Korean Peninsula during the 4th and the 5th centuries.

가평지역에서 발견된 철운석에 대한 암석학적, 광물학적 기재 및 예비분류

  • An In-Su;Kim Tae-Gyeong;Choe Byeon-Gak
    • 한국지구과학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.111-115
    • /
    • 2006
  • 최근 경기도 가평지역에서 새로운 철운석이 발견되었으며, 이는 한반도에 낙하(fall) 또는 발견(find)된 운석 중 다섯 번째 기록이다. 가평운석(가칭)은 북위 $37^{\circ}52'08'$, 동경$127^{\circ}27'54'$, 고도 147m 지점에서 발견되었으며, 운석의 분류상 철운석에 속한다. 가평운석의 표면은 지표상에서 풍화를 받은 흔적이 나타나나, 내부는 비드만스태튼 무늬(Widmanstatten pattern)와 같은 철운석의 특징이 잘 보존되어 있다. 가평운석의 암석학적, 광물학적 기재와 분류를 위해 주사전자현미경(Scanning Electron Microscope) 및 전자 현미분석기(electron probe micro-analyzer)를 이용했다. 풍화의 산물인 철산화물이 나타나는 최외각부를 제외하면 가평 운석은 거의 순수한 철-니켈 금속광물(Fe-Ni metal)로 이루어져 있다. 이 중 니켈 함량이 적은 카마사이트(kamacite)가 대부분이며 소량의 태나이트(taenite)가 산출되어 비드만스태튼 무늬를 구성한다. 비드만스태튼 무늬의 특징에 의한 분류에 따르면 가평운석은 중립질 또는 조립질 옥타헤드라이트(octahedrite)에 속한다. 철운석은 화학적으로 열 개 이상의 하부그룹으로 세분되며, 가평운석의 정확한 하부그룹으로의 분류는 친철원소에 대한 미량분석이 추가적으로 필요하다. 가평운석의 냉각률은 $^{\sim}1^{\circ}C/Ma$이하로 나타나며, 이는 가평운석이 천천히 냉각된 비교적 규모가 큰 소행성의 핵에서 유래했음을 지시한다.

  • PDF