• Title/Summary/Keyword: 화학적 비평형

Search Result 30, Processing Time 0.027 seconds

Chemical Equilbrium Analysis of the $30\;ton_f$ - class KARI LRE Nozzle Flow (KARI 30톤급 액체 로켓 엔진 노즐 유동 화학 평형 해석)

  • Lee, Dae-Sung;Kang, Ki-Ha;Cho, D.R.;Choi, Jeong-Yeol;Choi, H.S.
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.3
    • /
    • pp.9-15
    • /
    • 2008
  • Nozzle flow analyses of $30\;ton_f$-class KARI liquid rocket engine for high altitude propulsion are carried out using a chemically frozen and equilibrium flow analysis code developed previously. It is considered that the combined frozen- and shifting- equilibrium analysis is cost-effective regarding the convergence characteristics and modeling uncertainties, though the non-equilibrium analysis is most reliable approach. A dependable performance prediction could be attainable through the present analyses that account for the recombination process and thermal and kinetic energy recovery during the expansion process with viscous effects.

Comparison of Implicit Time Integration Schemes for the Analysis of Thermal and Chemical Non-equilibrium Flow (열적, 화학적 비평형 유동해석에서 내재적 시간 적분법의 비교)

  • Lee Chang Ho;Park Seung-O
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.11a
    • /
    • pp.42-47
    • /
    • 1999
  • In this study, we adopt the point symmetric Gauss-Seidel relaxation algorithm to obtain the steady state solution of the Navier-Stokes equations for the thermal and chemical nonequilibrium flow of air. All of the inviscid, viscous flux Jacobians and thermochemical source Jacobians are included in the implicit part Numerical simulation is performed for the thermal and chemical nonequilibrium flow over blunt body and computational results are presented. The convergence history and CPU time of the present computation are compared with the LU-SGS scheme which employs the approximate Jacobians.

  • PDF

Numerical Analysis of Nonequilibrium Chemically Reacting Inviscid flow over Blunt-bodies Using Upwind Method (Upwind 방법을 이용한 무딘물체 주위의 화학적 비평형 비점성 유동장의 수치 해석)

  • Seo Jeong Il;Song Dong Joo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.99-105
    • /
    • 1997
  • A finite-difference method based on conservative supra characteristic method type upwind flux difference splitting has been developed to study the nonequilibrium chemically reacting inviscid flow. For nonequilibrium air, NS-1 species equations were strongly coupled with flowfield equations through convection and species production terms. Inviscid nonequilibrium chemically reacting air mixture flows over Blunt-body were solved to demonstrate the capability of the current method. At low altitude flight conditions the nonequilibrium air models predicted almost the same temperature, density and pressure behind the shock as equilibrium flow: however, at high altitudes they showed substantial differences due to nonequilibrium chemistry effect. The new nonequilibrium chemically reacting upwind flux difference splitting mettled can be extended to viscous flow and multi-dimensional flow conditions.

  • PDF

Thermodynamic Study on the Limit of Applicability of Navier-Stokes Equation to Stationary Plane Shock-Waves (정상 평면충격파에 대한 Navier-Stokes 방정식의 적용한계에 관한 열역학적 연구)

  • Ohr, Young Gie
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.6
    • /
    • pp.409-414
    • /
    • 1996
  • The limit of applicability of Navier-Stokes equation to stationary plane shock-waves is examined by using the principle of minimum entropy production of linear irreversible thermodynamics. In order to obtain analytic results, the equation is linearized near the equilibrium of downstream. Results show that the solution of Navier-Stokes equation which fits the boundary condition of far downstream flow is consistent with the thermodynamic requirement within the first order when the solution is expanded around the M=1, where M is the Mach number of upstream speed.

  • PDF

A Study on NOx Removal Efficiency Depending on Electrode Configurations of Silent Discharges (무성방전 플라즈마 전극구조에 대한 질소산화물 제거효율 연구)

  • Hyung-Taek Kim;Young-Sik Chung;Myung-Whan Whang;Elena. A. Filimonova
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.3
    • /
    • pp.112-117
    • /
    • 2002
  • A comparative investigation of an experimental and a simulation of chemical kinetics for NOx removal from silent(dielectric-barrier) discharges is presented. Several types of dielectric-barrier discharges were implemented depending upon the configuration of electrodes. The simulation was based on an approximate mathematical model for plasma cleaning of waste gas. The influence of non-uniform distributions of species due to the production of primary active particles in the streamer channel was taken into account. A comparison of observed experimental to the calculated removal efficiency of NOx showed acceptable agreement.

A Numerical Study of Diffusion Flames in Supersonic Flow (초음속 유동장 내의 확산 화염에 관한 수치 연구)

  • 김지호;윤영빈;정인석
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.17-17
    • /
    • 1997
  • 극초음속 여객기와 군사용 항공기에 대한 수요가 증가함에 따라서 새로운 개념의 다양한 추진기관이 연구가 진행되고 개발되어 왔다. 초음속 항공기의 속도 영역은 마하 10-20 정도가 되는데 이 속도 한계를 극복하기 위하여 초음속 연소 램제트 엔진(SCRamjet; Supersonic Combustion Ramjet)이 제안되었다. 스크램 제트를 개발하기 위해서는 연료와 산화제의 혼합 효율 문제, 화염의 안정화 문제, 벽면의 냉각에 관한 문제 등 몇 가지 기본적인 문제들을 해결해야 한다. Univ of Michigan에서 실험한 연소기를 모델로 본 연구에서는 연료와 공기의 혼합에 관한 수치 연구를 수행하였다. 다원 혼합기체에 관한 축대칭 Navier-Stokes 방정식을 지배 방정식을 이용하였고 비평형 화학반응식을 고려하였다. 공간 차분에는 유한 체적법을 이용하였다. 대류 플럭스 항은 Roe의 Upwind FDS 기법을 사용하여 차분하였고 점성항에는 중심 차분법을 이용하였다. 시간 적분법으로는 근사 자코비안과 LU분할 기법을 이용한 완전 내재적 방법이 쓰였다. 난류 모델로는 Mentor에 의해 제안된 2 방정식 k-$\varepsilon$/k-$\omega$ 혼합모델을 사용하였다. 유동장이 실험에서의 찍은 사진과 유사한 모습의 충격파 간섭을 수치 모사하였고 수소가 확산되는 모습과 함께 노즐 lip 주위의 재순환 영역에 대해서 살펴볼 수 있었다.

  • PDF

Chemical Reacting Flow Analysis of the 30 tonf - class KARl LRE Nozzle (KARI 30톤급 액체로켓엔진 노즐 유동 화학 반응 해석)

  • Lee, Dae-Sung;Kang, Ki-Ha;Cho, Duck-Rae;Choi, J.Y.;Choi, H.S.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.105-109
    • /
    • 2007
  • Three methods of nozzle flow analysis, frozen-equilibrium, shifting-equilibrium and non-equilibrium approaches, were used to rocket nozzle flow, those were coupled with the methods of computational fluid dynamics code. For a design of high temperature rocket nozzle, chemical equilibrium analysis which shares the same numerical characteristics with frozen flow analysis can be an efficient design tool for predicting maximum thermodynamic performance of the nozzle. In this study, shifting-equilibrium flow analysis was carried out for the 30 $ton_f$-class KARl liquid rocket engine nozzle together with frozen flow. The performance evaluation based on the 30 $ton_f$-class KARl LRE nozzle flow analyses will provide an understanding of the thermochemical process in the nozzle and performances of nozzle.

  • PDF

Kinetics of Catalytic Reactions Occurring in a Small Reaction Volume (작은 반응 매질에서 일어나는 촉매 반응 속도에 관한 연구)

  • Kim, Jung-Han;Sung, Jae-Young
    • Journal of the Korean Chemical Society
    • /
    • v.52 no.3
    • /
    • pp.217-222
    • /
    • 2008
  • We investigate the kinetics of diffusion-influenced catalytic reactions occurring in small reaction volume. From a simple exact model study, we find that the reaction rate coefficient decreases with the size of reaction volume. The explicit expression for the average reaction rate constant is presented, which can be regarded as a generalization of well-known Collins-Kimball rate constant into the reactions occurring in a small reaction volume. It turns out that the traditional diffusion influenced reaction dynamics is followed by a single exponential relaxation phase with a rate constant dependent on the reaction volume for the catalytic reactions occurring in small reaction volumes.

Mineralogy and Genesis of Hydrothermal Deposits in the Southeastern Part of Korean Peninsula : (5) Deogbong Napseok Deposit (우리나라 동남부 지역의 열수광상에 대한 광물학적 및 광상학적 연구:(5) 덕봉납석광상)

  • Kim, Soo-Jin;Choo, Chang-Oh;Kim, Won-Sa
    • Journal of the Mineralogical Society of Korea
    • /
    • v.7 no.1
    • /
    • pp.25-39
    • /
    • 1994
  • The Deogbong napseok clay deposit which is composed mainly of dickite and pyrophyllite has been formed by hydrothermal alteration of the Late Cretaceous volcanic rocks consisting of andesitic tuff and andesite. The mineralogy of the napseok ores and the hydrothermal alteration processes have been studied in order to know the nature of the interaction between minerals and fluids for the formation of the deposit. Chemical distribution shows that alkali elements and silica were mobile but alumina was relatively immobile during the hydrothermal processes. It is evident that enrichment of alumina and leaching of silica from the host rock led to the formation of the napseok ore, whereas the enrichment of silica in the outer zone of the deposit gave rise to the silica zone. A large amount of microcrystalline quartz closely associated with dickite and pyrophyllite suggests the increasing activity of silica. Thus Si which was released away from the argillic zone by the increasing activity of silica. Thus Si which was released away from the argillic zone by the increasing activity of silica solubility moved out precipitating in the margin of the deposit to form the silica zone. Variation in dickite crystallinity implies the local change in the stability of the system. Thermodynamic calculation shows that the invariant point of pyrophyllite-dickite (kaolinite)-diaspore-quartz assemblages at 500 bars in the system $Al_{2}O_{3}-SiO_{2}-H_{2}O$ is about 300 $^{\circ}C$. Based on the mineral assemblages and the experimental data reported, it is estimated that the main episode of hydrothermal alteration occurred at least above 270 to 300 $^{\circ}C$ and $X_{CO_2}$ <0.025. Mineral occurrence and chemical variation indicate that the activity of Al is high in the upper part of the deposit, whereas the activity of Si is high in the lower part and the margin of the deposit. The nonequilibrium phase relations observed in the Deogbong deposit might be due to local change in intensive thermodynamic variables and fluid transport properties that resulted in the formation of nonequilibrium phases b of several stages.

  • PDF

Characteristics of Dual Transverse Injection in Supersonic Flow Fields II-Combustion Characteristics (초음속 유동장 내 이중 수직분사의 특성에 관한 연구 II-연소특성)

  • Shin, Hun-Bum;Lee, Sang-Hyeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.6
    • /
    • pp.61-68
    • /
    • 2002
  • Combustion characteristics of dual transverse injection of hydrogen in supersonic air flows were studied using computational methods. Three-dimensional Navier-Stokes with a non-equilibrium chemical reaction model and the k-$\omega$ SST turbulence model were used. A parametric study was conducted with the variation of the distance between two injectors. Combustion characteristics of dual injection are very different from those of single injection. The combustion characteristics of two injection flows are very different from each other, and the ignition and combustion characteristics of the rear injection flow are strongly influenced by those of the front injection flow. The increase of the distance between two injectors up to a specific distance results in the increase of burning rate. However, the increase of the distance over the specific distance gives no increase of burning rate but makes more losses of stagnation pressure. From the results it can be stated that there exists a distance between two injectors for optimum combustion characteristics.