When triangular meshes are generated from the point clouds in global space reconstructed through camera pose estimation against captured RGB-D streams, the quality of the resulting meshes improves as more triangles are hired. However, for 3D reconstructed models beyond some size threshold, they become to suffer from the ugly-looking artefacts due to the insufficient precision of RGB-D sensors as well as significant burdens in memory requirement and rendering cost. In this paper, for the generation of 3D models appropriate for real-time applications, we propose an effective technique that extracts high-quality textures for moderate-sized meshes from the captured colors associated with the reconstructed point sets. In particular, we show that via a simple method based on the mapping between the 3D global space resulting from the camera pose estimation and the 2D texture space, textures can be generated effectively for the 3D models reconstructed from captured RGB-D image streams.
This paper proposes a multi-view Wyner-Ziv Video coding scheme based on spatio-temporal adaptive estimation. The proposed algorithm is designed to search for a better estimated block with joint bi-directional motion estimation by introducing weights between temporal and spatial directions, and by classifying effectively the region of interest blocks, which is based on the edge detection and the synthesis, and by selecting the reference estimation block from the effective motion vector analysis. The proposed algorithm exploits the information of a single frame viewpoint and adjacent frame viewpoints, simultaneously and then generates adaptively side information in a variety of closure, and reflection regions to have a better performance. Through several simulations with multi-view video sequences, it is shown that the proposed algorithm performs visual quality improvement as well as bit-rate reduction, compared to the conventional methods.
Journal of the Korea Academia-Industrial cooperation Society
/
v.11
no.4
/
pp.1254-1259
/
2010
In this paper, Low Computational Adaptive Expanded Block Search Motion Estimation Method is proposed. Proposed method classifies ME blocks as Average Motion Block(AMB) and Local Motion Block(LMB) according to correlation of reference frame. It could reduce the computational complexity with performing Modified Fast Search(MFS). And accuracy of MV is also increased by 4 sub-blocks on LMB and Block Expansion(BE). The experimental results show that the proposed method has better performance that increased 1.8dB than Diamond Search and 0.6dB than Full Search with 7.5 % computation of Full Search. The proposed method could be applied to video compression and Frame Rate Conversion(FRC).
In this paper, we propose the efficient processing technique for unavailable data in hardware implementation of motion estimator in H.264/AVC with parallel processing architecture. Motion estimation processing in the hardware is generally based on pipe-lining, some MV data of neighbor blocks are not available, whereas all MV data are valid in software processing where the data are sequentially processed. In this paper, we solve the problem of data being unavailable in MVp computation. To minimize the quality degradation caused by unavailable MVs, in the proposed method, the unavailable MV of a neighboring block is replaced with an integer pel unit MV, an MVp of neighboring blocks, or an MVcol (MV of co-located block). Comparing to the conventional method [7], our method outperformed maximally 0.832dB and 0.179dB for QCIF and CIF, respectively, in terms of BDPSNR.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.8
no.4
/
pp.75-88
/
2008
This paper presents a spatial-level nonparametric multi-focus image fusion technique based on kernel estimates of input image blocks' underlying class-conditional probability density functions. Image fusion is approached as a classification task whose posterior class probabilities, P($wi{\mid}Bikl$), are calculated with likelihood density functions that are estimated from the training patterns. For each of the C input images Ii, the proposed method defines i classes wi and forms the fused image Z(k,l) from a decision map represented by a set of $P{\times}Q$ blocks Bikl whose features maximize the discriminant function based on the Bayesian decision principle. Performance of the proposed technique is evaluated in terms of RMSE and Mutual Information (MI) as the output quality measures. The width of the kernel functions, ${\sigma}$, were made to vary, and different kernels and block sizes were applied in performance evaluation. The proposed scheme is tested with C=2 and C=3 input images and results exhibited good performance.
Journal of the Korea Institute of Information and Communication Engineering
/
v.8
no.7
/
pp.1405-1409
/
2004
This paper is studied new block mode decision algorithm for H.264/AVC. The fast block mode decision algorithm is consist of block range decision algorithm. The block range decision algorithm classifies the block over 8$\times$8 size or below for 16${\times}$16 macroblock to decide the size and type of sub blocks. As the sub blocks of 8$\times$8, 8r4, 4$\times$8 and 4$\times$4, which are the blocks below 8$\times$8 size, include important motion information, the exact sub block decision is required. RDC(RDO cost) is used as the matching parameter for the exact sub block decision. RDC is calculated with motion strength which is the mean value of neighbor pixels of each sub block. The sub block range decision reduces encoding arithmetic amount by 34.62% on the average more than the case not using block range decision. The block mode decision using motion strength shows improvement of PSNR of 0.05[dB].
The Journal of Korean Institute of Communications and Information Sciences
/
v.28
no.4C
/
pp.397-405
/
2003
In this paper, we propose an efficient motion estimation algorithm which can reduce computational complexity by using characteristics of wavelet coefficient in each subband while keeping about the same image quality as in using MRME(multiresolution motion estimation). In general, because of the high similarity between consecutive frames, we first decide whether the motion exists or not by just comparing MAD(mean absolute difference) between blocks with threshold in the lowest subbands of consecutive two frames. If it turns out that there is no motion in the lowest subband, we can also decide no motion exists in the higher subband. This is due to the characteristics of wavelet transform. Conversely, if we find any motion in the lowest subband, we can reduce computational complexity by estimating high subband motion vectors selectively according to the amount of computational complexity by estimating high subband motion vectors selectively according to the amount of energy in that subband. Experimental results are shown that algorithm suggested in this paper maintains about the same PSNR as MRME. However, the processing time was reduced about 30-50% compared with the MRME.
This paper introduces a new technique that reduces the search times and Improves the accuracy of motion estimation using high temporal and spatial correlation of motion vector. Instead of using the fixed first search Point of previously proposed search algorithms, the proposed method finds more accurate first search point as to compensating searching area using high temporal and spatial correlation of motion vector. Therefore, the main idea of proposed method is to find first search point to improve the performance of motion estimation and reduce the search times. The proposed method utilizes the direction of the same coordinate block of the previous frame compared with a block of the current frame to use temporal correlation and the direction of the adjacent blocks of the current frame to use spatial correlation. Based on these directions, we compute the first search point. We search the motion vector in the middle of computed first search point with two fixed search patterns. Using that idea, an efficient adaptive predicted direction search algorithm (APDSA) for block matching motion estimation is proposed. In the experimental results show that the PSNR values are improved up to the 3.6dB as depend on the Image sequences and advanced about 1.7dB on an average. The results of the comparison show that the performance of the proposed APDSA algorithm is better than those of other fast search algorithms whether the image sequence contains fast or slow motion, and is similar to the performance of the FS (Full Search) algorithm. Simulation results also show that the performance of the APDSA scheme gives better subjective picture quality than the other fast search algorithms and is closer to that of the FS algorithm.
Motion Estimation(ME) has been developed to reduce temporal redundancy in digital video signals and increase data compression ratio. ME is an Important part of video encoding systems, since it can significantly affect the output quality of encoded sequences. However, ME requires high computational complexity, it is difficult to apply to real time video transmission. for this reason, motion estimation algorithms with low computational complexity are viable solutions. In this paper, we present an efficient method with low computational complexity based on spatial and temporal correlations of motion vectors. The proposed method uses temporally and spatially correlated motion information, the motion vector of the block with the same coordinate in the reference frame and the motion vectors of neighboring blocks around the current block in the current frame, to decide the search pattern and the location of search starting point adaptively. Experiments show that the image quality improvement of the proposed method over MVFAST (Motion Vector Field Adaptive Search Technique) and PMVFAST (Predictive Motion Vector Field Adaptive Search Technique) is 0.01~0.3(dB) better and the speedup improvement is about 1.12~l.33 times faster which resulted from lower computational complexity.
A joint design scheme is proposed to optimize the up/down scaler and the motion vector estimation module in the transcoder system. The proposed scheme first optimizes the resolution scaler for a fixed motion vector, and then a new motion vector is estimated for the fixed scaler. These two steps are iteratively repeated until they reach a local optimum solution. In the optimization of the scaler, we derive an adaptive version of a cubic convolution interpolator to enlarge or reduce digital images by arbitrary scaling factors. The adaptation is performed at each macroblock of an image. In order to estimate the optimal motion vector, a temporary motion vector is composed from the given motion vectors. Then the motion vector is refined over a narrow search range. It is well-known that this refinement scheme provides the comparable performance compared to the full search method. Simulation results show that a jointly optimized system based on the proposed algorithms outperforms the conventional systems. We can also see that the algorithms exhibit significant improvement in the minimization of information loss compared with other techniques.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.