• Title/Summary/Keyword: 화재환기

Search Result 214, Processing Time 0.023 seconds

비활성 가스제너레이터 성능분석

  • 김수용
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1999.04a
    • /
    • pp.14-14
    • /
    • 1999
  • 비활성 가스제너레이터는 가스터빈 추진기관 및 기타 열기관을 이용하여 연소가 되지 않는 저온의 공기를 생산하는 기계장치를 말하며 이러한 저온의 비활성 기체를 화재 지역에 분사하는 경우 기존의 소방수를 이용한 화재 진압방식보다 매우 효율적으로 화재진압에 사용되어 질 수 있다. 일반적으로 민항기 등의 가스터빈 추진 기관에서 배기되는 기체내에는 터빈입구온도(TIT : Turbine Inlet Temperature)및 초과공기지수(Excess Air Coefficient)에 따라 다르게 나타나지만 TIT가 1500$^{\circ}$K인 경우 약 13-14%정도의 산소가 잔존하는 것으로 알려져 있다. 따라서 본 연구에서는 가스터빈 및 열교환 시스템 그리고 터빈 1단 등의 시스템 조합율을 통하여 대기 중의 기체의 온도를 영하 2$0^{\circ}C$ 및 산소함유량을 약 5%수준까지 낮춤으로서 이를 대형 화재 진압에 사용하기 위한 연구이다. 비활성 가스제너레이터에 사용하는 연료로는 Kerosene 및 CNG(Compressed Natural Gas)등이 사용될 수 있으며, 유량이 8.1kg/sec인 터보축 가스터빈 엔진을 사용하는 경우 18750㎥ 부피의 비활성기체를 생산하는데 Kerosene 연료가 약 1톤(200$ 이하)이 필요한 것으로 계산되며 이에 소요되는 시간도 약 52분에 지나지 않는 것으로 계산되었다. 만일 50kg/sec의 보다 큰 가스터빈 엔진을 사용하는 경우 약 9분 정도가 필요한 것으로 계산되었다. 사용되는 가스터빈은 압축비가 15, 열교환기의 효율이 $\varepsilon$=0. 그리고 최종 터빈 1단의 팽창비가 1.25가 적합한 것으로 계산된다. 연구 분석 결과 기술적 문제점으로는 배기 가스온도가 낮은데 따른 출구 부분의 Bearing, Sealing이 문제가 될 수 있다고 판단되며 배기 가스 자체에 대기 공기중에 함유되어 있던 습기가 얼어붙는(Icing화) 문제가 발생하기 때문에 배기가스의 Icing을 방지하기 위하여 압축기 끝단에서 공기를 추출하여 배기부분에 송출할 필요성이 있는 것으로 판단되었다. 출구가스의 기체 유동속도가 매우 빠르므로 (100-l10m.sec) 이를 완화하기 위한 디퓨저의 설계가 요구된다고 판단된다. 또 연소기 후방에 물을 주입하는 경우 열교환기 및 기타 부분품에 발생할 수 있는 부식 및 열교환 효율 저하도 간과할 수 없는 문제로 파악되었다. 이러한 기술적 문제가 적절히 해결되는 경우 비활성 가스 제너레이터는 민수용으로는 대형 빌딩, 산림, 유조선 등의 화재에 매우 적절히 사용되어 질 수 있을 뿐 아니라 군사적으로도 군사작전 중 및 공군 기지의 화재 그리고 지하벙커에 설치되어 있는 고급 첨단 군사 장비 등의 화재 뿐 아니라 대간첩작전 등에 효과적으로 활용될 수 있을 것으로 판단된다.

  • PDF

Performance Evaluation of Wireless Sensor Networks in the Subway Station of Workroom (지하철 역사내 기능실에 대한 무선 센서 네트워크 성능 분석)

  • An, Tea-Ki;Shin, Jeong-Ryol;Kim, Gab-Young;Yang, Se-Hyun;Choi, Gab-Bong;Sim, Bo-Seog
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1701-1708
    • /
    • 2011
  • A typical day in the subway transportation is used by hundreds of thousands are also concerned about the safety of the various workrooms with high underground fire or other less than in the subway users could be damaging even to be raised and there. In 2010, in fact, room air through vents in the fire because smoke and toxic gas accident victims, and train service suspended until such cases are often reported. In response to these incidents in subway stations, even if the latest IT technology, wireless sensor network technology and intelligent video surveillance technology by integrating fire and structural integrity, such as a comprehensive integrated surveillance system to monitor the development of intelligent urban transit system and are under study. In this study, prior to the application of the monitoring system into the field stations, authors carried out the ZigBee-based wireless sensor networks performance analyzation in the Chungmuro station. The test results at a communications room and ventilation room of the station are summarized and analyzed.

  • PDF

A study on the operation characteristics of oversized exhaust port applicable to double-deck tunnel (복층터널에 적용 가능한 화재 연동형 대배기구 운영 특성 분석 연구)

  • Park, Jinouk;Yoo, Yongho;Kim, Yangkyun;Park, Byoungjik;Kim, Whiseong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.6
    • /
    • pp.887-895
    • /
    • 2019
  • Recently, the number of underground road development projects has been increasing to solve traffic problems in the national capital region and metropolitan areas with intensified overcrowding, and there has been a tendency to plan underground roads by applying a double-deck tunnel technology that has advantages in constructability and economical efficiency. The double-deck tunnel has a structure where one excavation section is divided into two parts and used as up and down lines, and is mainly used as a road for small vehicles only due to its low floor height. In addition, due to the small cross-sectional area, it has characteristics different from those of general road tunnels in terms of ventilation and disaster prevention. In this regard, this study proposed an operational plan that applies an oversized exhaust system, which is one of semi-transverse ventilation systems, to small cross-sectional tunnels like double-deck tunnel with low floor height, and a comparative analysis between smoke exhaust characteristics according to the fire occurrence locations and oversized exhaust systems was conducted using the Fire Dynamics Simulator (FDS). The results showed that unlike uniform exhaust, intensive smoke exhaust using the oversized exhaust port maximized the delay effect of smoke diffusion and limited the smoke within 50 m above and below the fire point.

Effect of the HVAC Conditions on the Smoke Ventilation Performance and Habitability for a Main Control Room Fire in Nuclear Power Plant (원자력발전소 주제어실 화재 시 공조모드가 배연성능 및 거주성에 미치는 영향 분석)

  • Kim, Beom-Gyu;Lim, Heok-Soon;Lee, Young-Seung;Kim, Myung-Su
    • Fire Science and Engineering
    • /
    • v.30 no.5
    • /
    • pp.74-81
    • /
    • 2016
  • This study evaluated the habitability of operators for main control room fires in nuclear power plants. Fire modeling (FDS v.6.0) was utilized for a fire safety assessment so that it could determine the performance of the smoke ventilation and operator habitability with the main control room. For this study, it categorized fire scenarios into three cases depending on the conditions in the HVAC system. As a result of fire modelling, it showed that Case 1 (with HVAC) would give rise to the worst situation associated with the absolute temperature, radiative heat flux, optical density, and smoke layer height as deliberating the habitability and smoke ventilation. On the other hand, it showed that Cases 2 (w/o HVAC) and 3 can maintain much safer situations than Case 1. In the case of temperature at 820 s, Cases 2 and 3 were up to approximately 63% greater than Case 1 in the wake of ignition. In addition, the influence of radiative heat flux of Case 1 was even larger than Cases 2 and 3. That is, the radiative heat fluxes of Cases 2 and 3 were approximately 68% higher than Case 1. Furthermore, when it comes to considering the optical density, Case 1 was approximately 93% greater than Cases 2 and 3. Accordingly, it expected that the HVAC system can influence a the performance on the smoke ventilation that can be sustainable for operator habitability. On the other hand, it revealed an inconsecutive pattern for the smoke layer height of Cases 2 and 3 because supply vents and exhaust vents were installed within the same surface.

Scintigraphic Evaluation of Inhalation Injury in Fire Victims (화재사고시 흡입에 의한 기도손상의 핵의학적 평가)

  • Chun, Kyung-Ah;Cho, Ihn-Ho;Won, Gyu-Jang;Lee, Hyung-Woo;Shin, Kyung-Chul;Jeong, Jin-Hong;Lee, Gwan-Ho
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.40 no.1
    • /
    • pp.28-32
    • /
    • 2006
  • Purpose: Conventional chest X-ray and pulmonary function test cannot sensitively detect inhalation injury. Bronchoscopy is known to be the gold standard but it is invasive method. We evaluated whether lung inhalation/perfusion scans can sensitively detect inhalation injury of fire victims. Materials and Methods: Nineteen patients (male 9, female 10, mean age 31.6 yr) of fire victims were enrolled in this study. Inhalation lung scan was performed 2 days later after inhalation injury with $^{99m}Tc$-technegas. Perfusion lung scan was performed 4 days later with $^{99m}Tc$- MAA (macroaggregated albumin). Follow up lung scans were performed 16 and 18 days later for each. Chest X-ray was performed in all patients and bronchoscopy was performed in 17 of 19 patients at the same period. Pulmonary function test was performed in 9 patients. Results: Four of 19 patients showed inhalation and perfusion defects and one showed inhalation defect but, normal perfusion scan findings. These five patients with abnormal scan findings showed abnormal bronchoscopic findings and severe respiratory symptoms. On chest X-ray, 2 of them had pulmonary tuberculosis and one of them showed pulmonary congestion. FEV1 /FVC was abnormal in 3 patients. On the follow up scan, all patients with abnormal initial scan findings showed improved findings and they had improved clinical state. Conclusion: Inhalation/perfusion lung scans can detect inhalation burn injury noninvasively in early stage and may be useful in therapeutic decision making and follow up of patients.

Analysis on The Characteristics of Occupancy Prediction and The Fire Hazard in Narrow Dwelling Space (협소 거주공간 재실자 특성 및 화재위험성 분석)

  • Lee, Changwoo;Oh, Seungju;Yoo, Juyoul;Kim, Jinsung;Cho, Ahra;Cho, Yongsun
    • Journal of the Society of Disaster Information
    • /
    • v.12 no.4
    • /
    • pp.342-349
    • /
    • 2016
  • The objectives of this study is analysis of the characteristics of fire risk and survey of narrow dwelling space(the Karaoke, Gosiwon etc). The narrow dwelling space has special structure characteristics; the narrow and the complex escape rote. Gosiwon have very separate and exclusive space room, so have the problem a suppression of fire. Furthermore almost Karaokes located in basement have a complex and limitary escape rote. Therefore we should research and development the exploration equipment that search a source of the fire and a emergency rescuer in the scene of the fire.

Experimental and Numerical Studies on Heat/Smoke Behavior due to a Fire on Underground Subway Platform (II) - Numerical Approach - (지하철 역사 승강장 화재발생시 열/연기 거동 분석을 위한 실험 및 수치 연구(II) - 수치적 접근 -)

  • Chang, Hee-Chul;Kim, Tae-Kuk;Park, Won-Hee;Kim, Dong-Hyeon
    • Fire Science and Engineering
    • /
    • v.20 no.3 s.63
    • /
    • pp.15-20
    • /
    • 2006
  • In this study the flow characteristics of smoke and heat on a bank type platform of the underground subway station are studied numerically by considering two different emergency operation modes. Effects of the natural flow through the tunnel and the stair ways are considered in the numerical simulations by using the measured velocities presented in Part I as the boundary condition. Distributions of heat, smoke, visible range and toxic gas on the platform are analysed for different smoke extraction flowrates corresponding to the two different emergency operation modes. The numerical results show that the extraction flowrate affects the smoke control performance significantly by improving the smoke removal performance as the extraction flowrate is increased.

A Numerical Study on Effective Smoke-Control System of a Rescue Station in a Tunnel Fire (터널내 열차 화재시 효과적인 구난역 제연 설비를 위한 수치 해석 연구)

  • Yang, Sung-Jin;Won, Chan-Shik;Hur, Nahm-Keon;Cha, Chul-Hyun
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.575-578
    • /
    • 2006
  • In designing smoke-control system of rescue station in train tunnel, a purpose is to prevent a disaster by proposing the jet fan operation together with smoke-control curtain in tunnel fire. This study has investigated the relationship of the Heat Release Rate(HRR) and a adequate ventilation velocity to control the fire propagation in tunnel fire, and has improved the effect of the smoke-control curtain on preventing the flow of pollutants. In this study, Computational Fluid Dynamics(CFD) simulations with ST AR-CD(ver 3.24) were carried out on predicting the fire spreading and the flow of pollutants, considering jet fan operations and effect of smoke-control curtain. Our simulation domain is the full scale model of the 'DAEGWALLYEONG' 1st tunnel. The results represent that ventilation operation can control the fire spreading and pollutants effectively to prevent a disaster.

  • PDF

A NUMERICAL STUDY ON THE FIRE EMERGENCY IN THE UNDERGROUND STATION WITH TRACKWAY EXHAUST SYSTEM (TES) (선로부 TES를 갖는 지하철 역사내 화재의 수치 해석)

  • Park, Jong-Tack;Won, Chan-Shik;Hur, Nahm-Keon
    • Journal of computational fluids engineering
    • /
    • v.11 no.4 s.35
    • /
    • pp.26-31
    • /
    • 2006
  • In the present study, a numerical simulation of the subway carriage fire is performed to determine the more effective operation of Trackway Exhaust System(TES) in underground stations. The four types of possible TES operation (OSUS, OSUE, OEUS and OEUE) is simulated and compared their removal capability of smoke and hot temperature for the carriage fire of 2MW. From the results, the distribution of temperature and smoke concentration is more dependent on the operation of fans located at upper side of the platform than those at lower side. It is also found from the results that for more efficient smoke control, the fans at upper side of the platform should be operated as an exhaust system. Whereas the fans at lower side can be operated as a supply system to aid upper exhaust fans.

An Experimental Study of Smoke Movement in Tunnel Fires with a Vertical Shaft (수직갱이 설치된 터널내 화재시 연기거동에 관한 실험적 연구)

  • 이성룡;유홍선;김충익
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.2
    • /
    • pp.135-141
    • /
    • 2004
  • The present paper concerns a smoke movement in a tunnel fire with a vertical shaft. The model tunnel measured 13.4m long, 0.4m wide and 0.4m high. The cross section is 1: 20 of a full scale tunnel. Ethanol was used as a fuel. The fire size in model tests varied from 1.35 kW to 13.37 kW, which corresponds to full scale fires of 2.41 to 23.91 MW. Smoke front velocity and temperatrue were decreased due to the vertical shaft install. Temperature was reduced maximum about 2$0^{\circ}C$ at ceiling and about 23$^{\circ}C$ at vertical position. CO concentration was reduced as the vent width widened. When vent width was more than 15 cm, CO concentration was not reached 100 ppm. Descent degree of the smoke layer was confirmed through the visualization.