• Title/Summary/Keyword: 화재위험성 평가

Search Result 440, Processing Time 0.025 seconds

A Study on Facility Criteria of Small Petrol Stations based on Quantitative Risk Assessment (정량적 위험성 평가에 기반한 간이 주유취급소 시설기준에 대한 연구)

  • Park, Wooin;Ku, Jae-Hyun;Song, Yong-Sun
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.3
    • /
    • pp.44-52
    • /
    • 2014
  • Small petrol stations have great potential for a wide distribution in metropolitan area in which the land value possesses primary installation cost of the facility. The objective of the present study is to propose appropriate facility regulations of small petrol stations in Korea that can be popularly installed in the future in terms of securing safety in addition to serviceability. The hazard analysis and damage prediction from the possible fire and explosion accidents were performed using a software, PHAST v.6.5. As essential components of the facility regulations proposed in this study, the regulations about the refueling lot, maximum capacity of underground tank, location of fixed refueling facilities, height of firewall for small petrol stations were subsequently compared with those for regular-sized petrol stations.

Study on Explosion Characteristics and Thermal Stability of Activated Carbon (활성탄의 폭발특성과 열안정성에 관한 연구)

  • Yi-Rac Choi;Dong-Hyun Seo;Ou-Sup Han;Hyo-Geun Cha
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.3
    • /
    • pp.134-140
    • /
    • 2023
  • Activated carbon is a carbonaceous material mainly used as a gaseous or liquid adsorbent. As fire-related accidents occur consistently due to the accumulation of heat of adsorption and oxidation of volatile organic compounds, the explosive characteristics and thermal stability of powdered and granular activated carbon made from coal and coconut shells were evaluated. As a result of the particle size analysis, the powdered activated carbon was in the particle size range (0.4~3) ㎛, and thermal properties such as exothermic onset temperature and decomposition behavior were analyzed using a differential scanning calorimetry and a thermogravimetric analysis. As a result of the evaluation of the explosion hazards for dust, both coal-based and coconut-based powdered activated carbon are classified as St1 class with weak explosion, but this is a relative and does not mean that the explosion hazards is absolutely low. Therefore, it is necessary to establish countermeasures for reducing the damage.

A Study on the Heat Release Characteristics of Fire Load for Performance Based Design of Multiplexes: A Focus on the Heat Release Rate and Fire Spread Rate of Cinema Seats (복합영상관의 성능위주설계를 위한 가연물의 연소발열특성 연구: 객석의자의 열발생률 및 연소확산속도를 중심으로)

  • Nam, Dong-Gun;Jang, Hyo-Yeon;Hwang, Cheol-Hong;Lim, Ohk-Kun
    • Fire Science and Engineering
    • /
    • v.34 no.1
    • /
    • pp.11-17
    • /
    • 2020
  • As performance-based design (PBD) has a direct impact on evacuation safety assessments, designing fire scenarios based on real fire tests is essential. To improve the reliability of the PBD for fire safety in multiplexes, information on fire behavior, such as heat release rate (HRR) and fire spread rate, are provided in this study by conducting a standard fabric flammability test. To this end, several chairs were arranged in a pattern that resembled a theater-style seating. The peak HRR and heating value per unit mass for each chair ranged from 415 kW to 988 kW and 15.2 MJ/kg to 23.8 MJ/kg, respectively. The heating values per unit mass of the new and old chairs were 23.6 MJ/kg and 16.7 MJ/kg, respectively. As the quantity of plastic and cushioning materials in the new chairs was more than that of the old ones, the new chairs were more vulnerable to fire hazards. Furthermore, when the chairs were arranged in a line, the fire spread rate was observed to be 0.39-0.42 m/min, regardless of the ignition location. Finally, a fire growth curve showing the peak HRR and fire spread rate was also demonstrated.

A Study on the Weighting of Fire Safety Attributes for Fire Risk Assessment in Historic Buildings - Focused on NakSansa- (역사적 건축물 화재위험성 평가를 위한 화재안전속성의 중요도분석 연구 - 낙산사를 중심으로 -)

  • Lee, Ji-Hee
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.3
    • /
    • pp.189-196
    • /
    • 2012
  • Fire is one of the greatest threats to historical buildings not only to the building's occupants but also to the building's structure and contents. The purpose of this research is to evaluate fire risk in historical buildings in Korea through a series of survey and review. In this research, a multicriteria decision-making approach involving Analytical Hierarchy Process has been designed to determine a weighted index to identify factors and quantify fire risk. Fire risk ranking systems of historical building has been developed in some applications, for example, BOCA, WISCONSIN, FSES and HFRI. According to the such derived fire risk indexing, the Human Activity index showed the highest risk, followed by Historic Buildings, Fire Safety Systems, and then Natural Environmental Causes. Comparison of these factors indicates that the derived risk values differ from case to case. It is proposed that a performance-based design approach should consider the building & occupant characteristics, locations and historical significance, resulting in a more accurate and effective evaluation of fire risk.

The Evaluation of Musculoskeletal Symptom and Patient Transport Work of 119 EMTs by Ergonomics Tools (119구급대원의 근골격계 증상과 환자운반 작업의 인간공학적 평가)

  • Hong, Sung-Gi
    • Fire Science and Engineering
    • /
    • v.28 no.4
    • /
    • pp.81-88
    • /
    • 2014
  • This study identified the complaint ratio of musculoskeletal symptom by 119 EMTs and investigated the work risk extent through ergonomics evaluation about the patient transport works, which cause work-related musculoskeletal disorders (WMSDs) to 119 EMTs. For this, the complaint ratio of musculoskeletal symptom utilized questionnaire tool based on KOSHA Code H-30-2008 and the risk extent about the patient transport work evaluated by using ergonomics evaluation tools such as OWAS, RULA and REBA. According to the study result, 60.9% of 119 EMTs experienced musculoskeletal symptom. Among them, the symptom on back was the most common (36.1%). The work, which mostly causes WMSDs, has been found as patient transport work (48.4%). Among the patient transport motion, loading/unloading of ambulance cot to/from ambulance and the lifting of patient by stretcher were OWAS risk-level 3 and RULA/REBA risk-level 3 to 4. Among the patient transport environment, carrying patient on stairway using emergency mini-stretcher, moving patient in vehicle using spine board and piggy-back carrying or cradle carrying patient on stairway or slope way were OWAS, RULA, REBA risk level 3 to 4. It is suggested that immediate improvement in work postures for these works should contribute to prevention against WMSDs to 119 EMTs.

The Measurement and Prediction of Flash Point for Binary Mixtures of Methanol, Ethanol, 2-Propanol and 1-Butanol at 101.3 kPa (Methanol, Ethanol, 2-Propanol 그리고 1-Butanol 이성분 혼합계에 대한 101.3 kPa에서의 인화점 측정 및 예측)

  • Oh, In Seok;In, Se Jin
    • Fire Science and Engineering
    • /
    • v.29 no.5
    • /
    • pp.1-6
    • /
    • 2015
  • Flash point is one of the most important variables used to characterize fire and explosion hazard of liquids. The lower flash point data were measured for the binary systems {methanol + 1-butanol}, {ethanol + 1-butanol} and {2-propanol + 1-butanol} at 101.3 kPa. Experiments were performed according to the standard test method (ASTM D 3278) using a SETA closed cup flash point tester. The measured flash points were compared with the predicted values calculated using the following activity coefficient models: Wilson, Non-Random Two Liquid (NRTL), and UNIversal QUAsiChemical (UNIQUAC). The measured FP data agreed well with the predicted values of Raoult's law, Wilson, NRTL and UNIQUAC models. The average absolute deviation between the predicted and measured lower FP was less than 1.14 K.

Hazard Evaluation of Minimum Ignition Energy by Electrostatic Voltage in Suspended Dust Particles (부유 분진의 정전압에 의한 최소착화에너지 위험성평가)

  • Han, Oue-Sup
    • Korean Chemical Engineering Research
    • /
    • v.59 no.3
    • /
    • pp.359-365
    • /
    • 2021
  • We investigated experimentally the ignition characteristic of dust and the hazard evaluating for electrostatic discharge. The ignition energy experiments were performed on sample dusts such as PE(HD), PE(LD), PMMA using the MIKE-3 apparatus. The formation of flame during the ignition of PE(HD) dust clouds occurred after the delay time of about 8 ms, and the flame kernels were not observed in center of ignition occurrence area. The voltage increased with increasing the number of dust dispersions and the increase rate of measured voltage with dust concentration was the highest in the order of PMMA, PE(LD) and PE(HD). For the effect of dispersion condition on the voltage in PE(HD) dust, the results were obtained that the voltage increased as the number of dispersions increased and as the concentration increased under the same dispersion number. The safety voltages to prevent fire and explosions by electrostatic ignition were estimated that PE(HD), PE(LD)-1, PE(LD)-2, and PMMA were 2.58, 44.72, 25.82, and 8.16 kV, respectively. We proposed the method for estimating the minimum ignition energy by using the measured voltage data for efficient investigation of electrostatic ignition hazard.

Measurements of the Heat Release Rate and Fire Growth Rate of Combustibles for the Performance-Based Design - Focusing on the Combustibles in Residential and Office Spaces (성능위주설계를 위한 가연물의 열발생률 및 화재성장률 측정 -주거 및 사무공간 가연물을 중심으로)

  • Nam, Dong-Gun;Hwang, Cheol-Hong
    • Fire Science and Engineering
    • /
    • v.31 no.2
    • /
    • pp.29-36
    • /
    • 2017
  • The design fire based on the heat release rate (HRR) of combustibles can significantly affect the assessment of fire safety in the performance-based design (PBD). In the present PBD, however, limited information in the foreign literature has been used without further verification due to the lack of fire information in domestic combustibles. The objective of this study is to provide information on the HRR and fire growth rate for various combustibles in residential and office spaces. To end this, the fire experiments were carried out with single and multiple combustibles. The peak HRR of combustibles used in the present study had a range of 36 kW~1,092 kW. The fire growth rates were also $0.003kW/s^2{\sim}0.0287kW/s^2$ and $0.003kW/s^2{\sim}0.0838kW/s^2$ for the residential and office spaces, respectively. In particular, a sofa had the highest fire risk in terms of the peak HRR and fire growth rate. Finally, a methodology for calculating the peak HRR in a space was proposed through correlation analysis between the peak HRR and exposed surface of various combustibles.

Performance-based Fire Protection Design of Domestic Super High-rise Buildings - Evaluation by ASET and RSET -

  • Roh, Hyeong-Ki
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.2
    • /
    • pp.9-13
    • /
    • 2011
  • The Performance-based fire protection design required to construct super high-rise building is the active measure for the evaluation of fire risks and the establishment of fire protection systems on the basis of engineering analysis, which is more efficient and proper than existing prescriptive-based design. This study applied time-line analysis of RSET is required safe egress time and ASET is available safe egress time with the fire and evacuation simulation to analyze. The result of this study showed the sprinkler system increased ASET and fire detection and alarm system reduced RSET efficiently. Reduced evacuation time influences to secure the life safety. Also it is essential to maintain the fire suppression system and fire detection & alarm system properly. Database of fire movement and evacuation action program are useful for the performance-based design.

The Evaluation of the Egress Performance in the Buildings Installed with Luminous Egress Guide-lines (건축물내 자체발광식 피난유도선 설치에 따른 피난성능 평가)

  • Park, Yong-Hwan;Kim, Beom-Gyu;Lim, Chae-Hyun
    • Fire Science and Engineering
    • /
    • v.25 no.6
    • /
    • pp.120-126
    • /
    • 2011
  • Recently luminous egress guide-lines are introduced for the fire safety of residents in the multi-use buildings such as Gosiwon. Little literature, however, on the quantitative and qualitative estimation for the egress performance of the luminous egress guide-lines can be found. This study carried out experimental investigations to evaluate the egress performance of the existing egress guide-lights and new luminous egress guide-lines. The results showed that both luminous egress guide-lines and egress guide-light satisfied the basic performance of KFI requirements. Under the 7 % smoke transmittance, however, luminous egress guide-lines showed 3 times longer visibility and less evacuation time than egress guide-lights. The evacuation density and smoke transmittance have significant effect on the evacuation time increase without the luminous egress guide-lines, however little effect with the installation.