• Title/Summary/Keyword: 화재연기 확산지연설비

Search Result 4, Processing Time 0.012 seconds

A study on the fire smoke diffusion delay strategy in a great depth underground double deck tunnel junction (대심도 복층터널 교차로 화재연기 확산지연 방안 연구)

  • Shin, Tae-Gyun;Moon, Jung-Joo;Yang, Yong-Won;Lee, Yun-Taek;Han, Jae-Hee
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.1
    • /
    • pp.115-126
    • /
    • 2019
  • Recently, in order to solve the traffic congestion in urban areas and to improve the peripheral environment, research on the design and construction technology development of great depth underground double-deck tunnel is under way by using the underground space in the urban area. The network type double-deck tunnel is in the form of an intersection with a small cross section and a steep slope as per construction at the base of a flatland, so that the fire smoke spreads rapidly in case of fire, which is expected to cause damage of human life. Therefore, this study is analyzed the delay effect of fire smoke diffusion according to the installation and non - installation of delay system for fire smoke diffusion at the intersection. Fire fumes were delayed up to 270 seconds when the delay system for fire smoke diffusion was installed at the intersection and it is analyzed that the greater the operating area of the delay system for fire smoke diffusion, the more preventable the damage of human life of the intersection.

Study of the Characteristics of Smoke Spread by an Installing Smoke Barrier in Medium Length Road Tunnel (중규모 도로터널의 제연경계벽 설치에 따른 연기확산특성)

  • Baek, Doo-San;Lee, Seung-Chul
    • Fire Science and Engineering
    • /
    • v.30 no.5
    • /
    • pp.9-17
    • /
    • 2016
  • In the case of a medium length road tunnel, the installation of a smoke control facility is not mandatory so users can suffer considerable injuries if a fire breaks out. Therefore, this study analyzed the high-temperature air and toxic gas generated by fire proliferating with time when a smoke barrier is not installed and when the installation interval is 100, 150, 200, and 250 m through 3-dimensional numerical analysis, evacuation simulation, and Quantitative Risk Assessment Methodology targeting the medium length road tunnel. As a result, the diffusion of the high-temperature air and toxic gas occurring from the a fire was delayed when the smoke barrier was installed in a medium length road tunnel compared to that when it was not installed. In addition, when the installation interval of a smoke barrier was 100m and the numerical analysis target was 100m, the diffusion of high-temperature air and toxic gas generated by the fire was delayed more than in the other cases, which was most suitable for tunnel users to evacuate.

Analysis of Fire Intensity According to the Zones Classification in Traditional Market Stores (전통재래시장 상가간의 구역 구분에 따른 화재강도 분석)

  • Kim, Tae Kwon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.154-160
    • /
    • 2020
  • This study analyzed the fire intensity according to the zones classification between traditional market stores using FDS software. Modeling was conducted for the Seomoon traditional market district 4 at Daegu, which places combustibles, such as textiles and clothing near the passageway. The first ignition point assumed a short circuit fire situation at the fourth store combustible. The analysis was conducted under similar conditions as the fire situation in 2016. When there was no section wall, the fire spread rapidly through radiation in all directions from the fire-origin point. After 600 seconds, the mall was burnt to the ground. When section walls were present, however, the fire could be restricted inside the compartment. The first intensity of the two analysis conditions was predicted from the total heat energy from 200 seconds (X1) to 600 seconds (X2), where the heat generation rate began to increase rapidly. As a result of installing section walls near the fire point, heat energy generation of approximately 11.12 MW (55.68 %) was delayed. Further analysis of smoke control, according to the section wall arrangement and re-installation facilities, will be needed to study the characteristics of fire in traditional markets comprehensively.

A Study on the Application of Bushings Fire Prevent Structure to Prevent Fire Spread of Transformer (변압기의 화재확산 방지를 위한 부싱 방화구조체 적용에 관한 연구)

  • Kim, Do-Hyun;Cho, Nam-Wook;Yoon, Choung-Ho;Park, Pil-Yong;Park, Keun-Sung
    • Fire Science and Engineering
    • /
    • v.31 no.5
    • /
    • pp.53-62
    • /
    • 2017
  • Electric power which is the energy source of economy and industries requires long distance transportation due to regional difference between its production and consumption, and it is supplied through the multi-loop transmission and distribution system. Prior to its actual use, electric power flows through several transformations by voltage transformers in substations depending on the characteristics of each usage, and a transformer has the structure consisting of the main body, winding wire, insulating oil and bushings. A transformer fire that breaks out in substations entails the primary damage that interrupts the power supply to houses and commercial facilities and causes various safety accidents as well as the secondary economic losses. It is considered that causes of such fire include the leak of insulating oil resulting from the destruction of bottom part of bushings, and the chain reaction of fire due to insulating oil that reaches its ignition point within 1 second. The smoke detector and automatic fire extinguishing system are established in order to minimize fire damage, but a difficulty in securing golden time for extinguishing fire due to delay in the operation of detector and release of gas from the extinguishing system has become a problem. Accordingly, this study was carried out according to needs of active mechanism to prevent the spread of fire and block the leak of insulating oil, in accordance with the importance of securing golden time in extinguishing a fire in its early stage. A bushings fireproof structure was developed by applying the high temperature shape retention materials, which are expanded by flame, and mechanical flame cutoff devices. The bushings fireproof structure was installed on the transformer model produced by applying the actual standards of bushings and flange, and the full scale fire test was carried out. It was confirmed that the bushings fireproof structure operated at accurate position and height within 3 seconds from the flame initiation. It is considered that it could block the spread of flame effectively in the event of actual transformer fire.