• Title/Summary/Keyword: 화재안전지수

Search Result 58, Processing Time 0.02 seconds

Hazard Assessment of Combustion Gases from Interior Materials (주요 건축 내장재의 연소가스 유해성 평가)

  • Seo, Hyun Jeong;Son, Dong Won
    • Fire Science and Engineering
    • /
    • v.29 no.4
    • /
    • pp.49-56
    • /
    • 2015
  • Toxic gases from five types of interior building materials were investigated according to Naval Engineering Standard (NES) 713. The materials were plywood, indoor wall coverings (wood wall plate members and pine wood), reinforced Styrofoam insulation, laminate flooring, and PVC. Specimens were measured using an NES 713 toxicity test apparatus to analyze the hazardous substances in combustion gas from the materials. We used the US Department of Defense standard (MIL-DTL, Military Standard) to calculate the toxicity index of the combustion gas. Emissions of $CO_2$ from all specimens did not exceed the NES 713 limit of 100,000 ppm. The amount of CO gas emissions from reinforced Styrofoam insulation was 6,098 ppm. 25 ppm and 49 ppm of formaldehyde were released from the reinforced Styrofoam insulation and PVC flooring, respectively. These values were less than the limit of 400 ppm. The highest emissions were from $NO_X$ emitted by plywood and were above the limit of 250 ppm. The toxicity index of the specimens were calculated as 5.19 for plywood, 4.13 for PVC flooring, 2.35 for reinforced Styrofoam insulation, 2.34 for laminate flooring, and 1.22 for indoor wall coverings (pine wood). Our research helps us to understand the properties of these five interior materials by analyzing the combustion gas and explaining the toxicity of constituents and the toxicity index. Also, it would be useful for giving fundamentals to guide the safe use of interior materials for applications.

Influence of Mixture Non-uniformity on Methane Explosion Characteristics in a Horizontal Duct (수평 배관의 메탄 폭발특성에 있어서 불균일성 혼합기의 영향)

  • Ou-Sup Han;Yi-Rac Choi;HyeongHk Kim;JinHo Lim
    • Korean Chemical Engineering Research
    • /
    • v.62 no.1
    • /
    • pp.27-35
    • /
    • 2024
  • Fuel gases such as methane and propane are used in explosion hazardous area of domestic plants and can form non-uniform mixtures with the influence of process conditions due to leakage. The fire-explosion risk assessment using literature data measured under uniform mixtures, damage prediction can be obtained the different results from actual explosion accidents by gas leaks. An explosion characteristics such as explosion pressure and flame velocity of non-uniform gas mixtures with concentration change similar to that of facility leak were examined. The experiments were conducted in a closed 0.82 m long stainless steel duct with observation recorded by color high speed camera and piezo pressure sensor. Also we proposed the quantification method of non-uniform mixtures from a regression analysis model on the change of concentration difference with time in explosion duct. For the non-uniform condition of this study, the area of flame surface enlarged with increasing the concentration non-uniform in the flame propagation of methane and was similar to the wrinkled flame structure existing in a turbulent flame. The time to peak pressure of methane decreased as the non-uniform increased and the explosion pressure increased with increasing the non-uniform. The ranges of KG (Deflagration index) of methane with the concentration non-uniform were 1.30 to 1.58 [MPa·m/s] and the increase rate of KG was 17.7% in methane with changing from uniform to non-uniform.

Explosion Characteristics and Flame Velocity of Suspended Plastic Powders (플라스틱 부유 분진의 폭발특성과 화염전파속도)

  • Han, Ou Sup;Lee, Keun Won
    • Korean Chemical Engineering Research
    • /
    • v.54 no.3
    • /
    • pp.367-373
    • /
    • 2016
  • Many of plastic powders handled in industry are combustible and have the hazard of dust fire and explosion accidents. However poor information about the safe handling has been presented in the production works. The aim of this research is investigated experimentally on explosive characteristics of various plastic powders used in industry and to provide additional data with safety informations. The explosibility parameters investigated using standard dust explosibility test equipment of Siwek 20-L explosion chamber. As the results, the dust explosion index ($K_{st}$) of ABS ($209.8{\mu}m$), PE ($81.8{\mu}m$), PBT ($21.3{\mu}m$), MBS ($26.7{\mu}m$) and PMMA ($14.3{\mu}m$) are 62.4, 59.4, 70.3, 303 and 203.6[$bar{\cdot}m/s$], respectively. And flame propagation velocity during plastic dust explosions for prediction of explosive damage was estimated using a flame propagation model based on the time to peak pressure and flame arrival time in dust explosion pressure assuming the constant burning velocity.

Hazard Evaluation of Gas Processes Using a Multi-distinction Equipment Screening Algorithm (다중판별 장치 스크리닝 기법을 이용한 가스공정의 위험성 평가)

  • Yoon En Sup;Park Jeong Su;Ahn Sung Joon;Han Kyounghoon;Yoon Jong Phil;Kim Ku Hwoi;Shin Dongil
    • Journal of the Korean Institute of Gas
    • /
    • v.7 no.1 s.18
    • /
    • pp.1-9
    • /
    • 2003
  • A Multi-distinction Equipment Screening Algorithm (MESA) is proposed. It selectively integrates Dow's F&EI as its process hazard index technique and ESA (Equipment Screening Algorithm) as qualitative hazard classification technique, and retrieves a detailed list of hazardous equipments with the total hazard indices of those equipments. The inherent expert system, which includes the accident scenarios of the equipments and processes and experts' views of them, narrows further down the list of hazardous equipments and recommends only the most notable candidates. Through the case study of distinguishing the hazardous ranking of the equipments of the LPG underground storage process, using the expert system or not, the applicability of MESA has been validated. Taking the characteristics of the process equipments with hazardous ranking in the point of process intrinsic safety, this proposed algorithm would contribute to providing engineers or managers with information on constructing safely devices and mitigation devices and on scheduling emergency response planning.

  • PDF

Hazard Assessment of Explosion in Suspended Dust of Wood (목재 부유분진의 폭발 위험성 평가)

  • Lee, Keun Won;Lee, Su-Hee;Han, Ou-Sup
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.5
    • /
    • pp.81-86
    • /
    • 2013
  • Accidents of dust explosion has been occurred in various industries as a plastics, pharmaceuticals, timber, grain storage, solid fuels and chemicals. In this study, the silo dust, hammer mill dust and Nyusong dust in the manufacturing process of the particle board to utilize west wood, which were selected for this experiment and were evaluated the characteristics of dust explosion. The explosion characteristics such as a maximum explosion pressure, explosion index, lower explosive limit, and minimum ignition energy in suspended dust of the wood by Siwek 20 L apparatus were measured and evaluated for the experiment. The results of this study can be used the process safety measures to prevent accidents of fire and explosion in the suspended dust of wood.

Study on Realistic Disaster Management Service Implementation Plan : Focusing on Differential Views in Public and Private Experts (실감형 재난대응 서비스 구현방안 연구 : 공공과 민간 분야 전문가 인식 차이를 중심으로)

  • Choi, Woo-Chul;Kim, Tae-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.625-633
    • /
    • 2020
  • this study, an expert AHP questionnaire analysis of public and private groups was conducted to take into consideration the requirements for realistic disaster services. Considered are public areas that manage disasters like fires and earthquakes that can be a major threat to national safety, as well as private areas that mainly develop disaster-related technologies. In the questionnaire, the public respondents valued accurate disaster situation information (ranked 4th and 6th) for citizens (1st), managers (3rd), and related organizations (2nd); the private sector highly valued the importance of three-dimensional (3D) control (ranked 1st, 3rd, and 5th) using future technologies. This study suggests the realization of a disaster-response service that meets the needs of public safety and technological innovation based on a 3D safety state information platform. We anticipate that this study will provide useful data for applying technology and for establishing detailed scenarios during the test bed and commercialization phases. We also expect that further studies will be conducted, such as the practical application and operation of realistic disaster response services, on the financial resources for the proliferation of local governments, and on policy support measures.

Smoke Generation by Burning Test of Cypress Plates Treated with Boron Compounds (붕소 화합물로 처리된 편백목재의 연소시험에 의한 연기발생)

  • Chung, Yeong-Jin;Jin, Eui
    • Applied Chemistry for Engineering
    • /
    • v.29 no.6
    • /
    • pp.670-676
    • /
    • 2018
  • Experiments on combustion gases generation of untreated cypress specimens or treated with boric acid, ammonium pentaborate, and boric acid/ammonium pentaborate additive were carried out. Test specimens were painted three times with 15 wt% boron compound aqueous solutions. After drying, the generation of combustion gas was analyzed using a cone calorimeter (ISO 5660-1). As a result, comparing to untreated specimen, the smoke performance index (SPI) of the specimens treated with the boron compound increased by 1.37 to 2.68 times and the smoke growth index (SGI) decreased by 29.4 to 52.9%. The smoke intensity (SI) of the specimens treated with boron compounds is expected to be 1.16 to 3.92 times lower than that of untreated specimens, resulting in lower smoke and fire hazards. Also, the maximum carbon monoxide ($CO_{peak}$) concentration of specimens treated with boron compounds was 12.7 to 30.9% lower than that of untreated specimens. However, it was measured to produce fatal toxicities from 1.52 to 1.92 times higher than that of permissible exposure limits (PEL) by Occupational Safety and Health Administration (OSHA). The boron compounds played a role in reducing carbon monoxide, but it did not meet the expectation of reduction effect because of the high concentration of carbon monoxide in cypress itself.

Comparison of acoustics performance measurement and evaluation standard of office space and office acoustics criteria of European countries (사무공간의 음향성능 측정, 평가 방법의 표준화와 유럽 국가들의 음향성능 기준 비교)

  • Jeong-Ho Jeong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.2
    • /
    • pp.133-142
    • /
    • 2023
  • The office environment is changing according to work types, Information Technology (IT) advancements, and the Coronavirus disease (COVID)-19 situation. In order for office space users to perform their tasks comfortably and efficiently, it is necessary to secure individual privacy as well as easy communication among members. In Korea, the demand for improving the acoustic performance of office spaces is also increasing, but the related performance criteria and guidelines have not been established. In this study, standardization of office space acoustic performance measurement and evaluation methods and European countries' acoustic performance criteria were compared and reviewed. It is proposed to comprehensively review international standardization trends and acoustic performance standards in each country and to establish and utilize criteria for evaluating the acoustic performance and satisfaction of office spaces in Korea through our survey. Considering the international standardization direction and compatibility with communication and Public Address (PA) systems, it is appropriate to establish criteria using the speech transmission index or Speech Transmission Index (STI) application index. This criterion will be highly utilizable and compatible. In addition, since the office furniture industry is interested in improving the acoustic performance of office space, it is necessary to establish a labelling system for speech level reduction of office furniture.