• Title/Summary/Keyword: 화재방호

Search Result 130, Processing Time 0.026 seconds

Literature Review and Current Trends of Automated Design for Fire Protection Facilities (화재방호 설비 설계 자동화를 위한 선행연구 및 기술 분석)

  • Hong, Sung-Hyup;Choi, Doo Chan;Lee, Kwang Ho
    • Land and Housing Review
    • /
    • v.11 no.4
    • /
    • pp.99-104
    • /
    • 2020
  • This paper presents the recent research developments identified through a review of literature on the application of artificial intelligence in developing automated designs of fire protection facilities. The literature review covered research related to image recognition and applicable neural networks. Firstly, it was found that convolutional neural network (CNN) may be applied to the development of automating the design of fire protection facilities. It requires a high level of object detection accuracy necessitating the classification of each object making up the image. Secondly, to ensure accurate object detection and building information, the data need to be pulled from architectural drawings. Thirdly, by applying image recognition and classification, this can be done by extracting wall and surface information using dimension lines and pixels. All combined, the current review of literature strongly indicates that it is possible to develop automated designs for fire protection utilizing artificial intelligence.

An Experimental Study on the Determination of the Flow Rate for a Feasible $N_2$ Generator to Extinguish the Fire (소화성능이 있는 질소발생기의 방사량 결정에 관한 실험적 연구)

  • Jang, Young-Keun;Kim, Duk-Joo;Suh, Byung-Taek
    • Fire Science and Engineering
    • /
    • v.24 no.6
    • /
    • pp.54-60
    • /
    • 2010
  • An experimental study has been carried out to determine the flow rate for a feasible N2 generator to extinguish the fire, and this study analogized the correlations to determine the flow rate for $N_2$ generator considered an Oxygen concentration, protected enclosure, discharging pressure and discharging time. We manufactured simple protected enclosure for analyzing fire-extinguishing performance of the $N_2$ generator. As a $N_2$ gas is exhausted on protected enclosure, a various of Oxygen concentration is measured to analyze fire-extinguishing performance experimentally. The correlations determined as an uncertainty analysis for the Oxygen concentration deviations of the theoretical and experimental value. The analogized correlations is Q = (21 $\times$ V)/($O_2+{\zeta}{\cdot}P$)-V. In case of $300m^3$ protected enclosure, 0.8 MPa discharging pressure and $40m^3$/min $N_2$ flow rate, the Oxygen concentration is decreased below 15% within 3 minutes.

Study on Suggestion of Smoke-proof System Using a Restroom for a Refuge Space (화장실 이용 피난공간의 방연시스템 제안 및 실규모 실험)

  • Kim, Jung-Yup;Shin, Hyun-Joon
    • Fire Science and Engineering
    • /
    • v.26 no.5
    • /
    • pp.61-66
    • /
    • 2012
  • In restroom on high-rise building, exhaust system comprising the blower and duct is installed to discharge the odor and the water is suppled. Thus the restroom with fire and flame protection system may be used as refuge area in a fire situation. The study presents the smoke-proof system which operates such that the exhaust system to discharge the odor is converted to air supply system and appropriate pressure difference between the restroom and the accommodation is maintained. Also real-scale test facilities of smoke-proof system for refuge space using a restroom are installed on 5-story smoke control test building and experiments for evaluating the operational performance of smoke-proof system are carried out.

Study of Post-Fire Safe-Shutdown Analysis of a CANDU Main Control Room based on NEI 00-01 Methodology (NEI 방법론을 적용한 중수로 주제어실의 화재안전정지분석에 관한 연구)

  • Kim, In-Hwan;Lim, Heok-Soon;Bae, Yeon-Kyoung
    • Fire Science and Engineering
    • /
    • v.30 no.4
    • /
    • pp.20-26
    • /
    • 2016
  • When the fire takes place in Nuclear Powr Plants(NPPs), the reactor should achieve and maintain safe shut-down conditions and minimize the radioactive material released to the environment. The U.S. Nuclear Regulatory Commission (NRC) has issued numerous generic communications related to fire protection over the past 20 years, after it issued its requirements in the Fire Protection Rule set forth in Title 10, Section 50.48 of the Code of Federal Regulations (10 CFR 50.48) and Appendix R to the 10 CFR 50. The and Nuclear Energy Institute (NEI) has developed a Methodology for Risk Informed Fire Safe-Shutdown Analysis, which is related to the Deterministic Method for Multiple Spurious Operations solutions. The aim of this study was to identify, achieve, and maintain Post-Fire Safe-Shutdown of the Main Control Room (MCR) of the CANDU reactor, even though one train of the multiple Safety Structures, Systems, and Components (SCCs) fail by the technical specification and analysis method.

Development of Walk-down Performance Procedures for Fire Modeling of Nuclear Power Plants based on Deterministic Fire Protection Requirements (결정론적 화재방호요건을 기반으로 한 원자력발전소 화재모델링 현장실사 수행절차 개발)

  • Moon, Jongseol;Lee, Jaiho
    • Fire Science and Engineering
    • /
    • v.33 no.6
    • /
    • pp.43-52
    • /
    • 2019
  • A walk-down procedure for fire modeling of nuclear power plants, based on deterministic fire protection requirements, was developed. The walk-down procedure includes checking the locations of safety shutdown equipment and cables that are not correctly indicated on drawings and identifying the existence and location of combustibles and ignition sources. In order to verify the performance of the walk-down procedure developed in this study, a sample of important equipment and cables were selected for hypothetical multiple spurious operation (MSO) scenarios. In addition, the hypothetical fire modeling scenarios were derived from the selected safe shutdown equipment and cables and an actual walk-down was conducted. The plant information collected through the walk-down was compared to the information obtained from the drawings, so that the collected information may be used as input values for the fire modeling.

Management of Fire Barrier Penetration Seals in Operating Nuclear Power Plants (가동원전 방화벽 관통부 관리방안)

  • Oh, Seung-Jun
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2010.10a
    • /
    • pp.207-210
    • /
    • 2010
  • 원자력발전소 화재방호 규정이 제정되기 이전에 설계되어 방화벽 관통부 내화성능 인증자료가 미흡하였던 국내 일부 가동원전들은 최근 성능인증이 완료되었거나 진행 중이다. 성능인증이 완료된 방화벽 관통부는 발전소 운영기간 동안 요구성능이 유지되도록 적합한 관리방안이 필요하다. 본 논문에서는 성능인증이 완료된 가동원전을 대상으로 방화벽 관통부 관리현황의 적합성을 평가하고 관리방법 및 절차를 향상시키기 위한 향후 과제를 제안하였다.

  • PDF