• 제목/요약/키워드: 화자 인식

검색결과 592건 처리시간 0.021초

화자식별 기반의 AI 음성인식 서비스에 대한 사이버 위협 분석 (Cyber Threats Analysis of AI Voice Recognition-based Services with Automatic Speaker Verification)

  • 홍천호;조영호
    • 인터넷정보학회논문지
    • /
    • 제22권6호
    • /
    • pp.33-40
    • /
    • 2021
  • 음성인식(ASR: Automatic Speech Recognition)은 사람의 말소리를 음성 신호로 분석하고, 문자열로 자동 변화하여 이해하는 기술이다. 초기 음성인식 기술은 하나의 단어를 인식하는 것을 시작으로 두 개 이상의 단어로 구성된 문장을 인식하는 수준까지 진화하였다. 실시간 음성 대화에 있어 높은 인식률은 자연스러운 정보전달의 편리성을 극대화하여 그 적용 범위를 확장하고 있다. 반면에, 음성인식 기술의 활발한 적용에 따라 관련된 사이버 공격과 위협에 대한 우려 역시 증가하고 있다. 기존 연구를 살펴보면, 자동화자식별(ASV: Automatic Speaker Verification) 기법의 고안과 정확성 향상 등 기술 발전 자체에 관한 연구는 활발히 이루어지고 있으나, 실생활에 적용되고 있는 음성인식 서비스의 자동화자 식별 기술에 대한 사이버 공격 및 위협에 관한 분석연구는 다양하고 깊이 있게 수행되지 않고 있다. 본 연구에서는 자동화자 식별 기술을 갖춘 AI 음성인식 서비스를 대상으로 음성 주파수와 음성속도를 조작하여 음성인증을 우회하는 사이버 공격 모델을 제안하고, 상용 스마트폰의 자동화자 식별 체계를 대상으로 실제 실험을 통해 사이버 위협을 분석한다. 이를 통해 관련 사이버 위협의 심각성을 알리고 효과적인 대응 방안에 관한 연구 관심을 높이고자 한다.

PVPF방법과 퍼지 이론을 이용한 한국어, 영어 및 일본어 화자 인식에 관한 연구 (A Study on Korean, English and Japanese Speaker Recognitions Using the Peak and Valley Pitch Detection and the Fuzzy Theory)

  • 김연숙
    • 한국정보처리학회논문지
    • /
    • 제6권2호
    • /
    • pp.522-533
    • /
    • 1999
  • 본 논문에서는 피지 파라미터와 퍼지 추론을 포함한 화자 인식 알고리즘을 제안한다. 시간영역에서 검출 알고리즘의 장점인 잡음에 강인함을 가진 PVPF 법을 제안하여 피치를 검출한다. 또한 화자 인식에서 특징량들의 애매성을 표현하고 인식하는 방법으로 퍼지 이론을 도입하였다. PVPF는 음의 시간적인 특징을 이용하여 국부적으로 봉우리와 골을 이룬다는 것을 이용한 계산량이 적고 잡음에 강인한 피치 검출법이다.

  • PDF

퍼지 이론을 이용한 한국어 및 영어 화자 인식에 관한 연구 (A Study on Korean and English Speaker Recognitions using the Fuzzy Theory)

  • 김연숙;김희주;김경재
    • 한국컴퓨터정보학회논문지
    • /
    • 제7권3호
    • /
    • pp.49-55
    • /
    • 2002
  • 본 논문에서는 피치 파라미터와 퍼지를 포함한 화자 인식 알고리즘을 제안한다. 음의 시간적인 특징을 이용하여 시간 영역에서 분해력을 높이고 주파수 영역에서 잡음에 강인함을 갖는 국부 봉우리와 골에 의한 피치 검출법을 제안하여 피치를 검출한다. 또한 화자 인식에서 음성 신호의 애매성을 보완할 수 있는 퍼지의 소속함수를 이용하여 표준 패턴을 작성하고 퍼지 패턴 매칭을 이용하여 인식을 수행한다.

  • PDF

퍼지 이론을 이용한 한국어 및 일어 화자 인식에 관한 연구 (A Study on Korean and Japanese Speaker Recognitions using the Fuzzy Theory)

  • 김연숙;김창완
    • 한국컴퓨터정보학회논문지
    • /
    • 제5권3호
    • /
    • pp.51-57
    • /
    • 2000
  • 본 논문에서는 피치와 퍼지를 포함한 화자 인식 알고리즘을 제안한다. 음의 시간적인 특징을 이용하여 시간 영역에서 분해력을 높이고 주파수 영역에서 잡음에 강인함을 갖는 국부 봉우리와 골에 의한 피치 검출법을 제안하여 피치를 검출한다. 또한 화자 인식에서 음성 신호의 애매성을 보완할 수 있는 퍼지의 소속함수를 이용하여 표준 패턴을 작성하고 퍼지 패턴 매칭을 이용하여 인식을 수행한다.

  • PDF

화자 인식을 위한 적대학습 기반 음성 분리 프레임워크에 대한 연구 (A study on speech disentanglement framework based on adversarial learning for speaker recognition)

  • 권유환;정수환;강홍구
    • 한국음향학회지
    • /
    • 제39권5호
    • /
    • pp.447-453
    • /
    • 2020
  • 본 논문은 딥러닝 기법을 활용하여 음성신호로부터 효율적인 화자 벡터를 추출하는 시스템을 제안한다. 음성신호에는 발화내용, 감정, 배경잡음 등과 같이 화자의 특징과는 관련이 없는 정보들이 포함되어 있다는 점에 착안하여 제안 방법에서는 추출된 화자 벡터에 화자의 특징과 관련된 정보는 가능한 많이 포함되고, 그렇지 않은 비화자 정보는 최소화될 수 있도록 학습을 진행한다. 특히, 오토-인코더 구조의 부호화 기가 두 개의 임베딩 벡터를 추정하도록 하고, 효과적인 손실 함수 조건을 두어 각 임베딩이 화자 및 비화자 특징만 각각 포함할 수 있도록 하는 효과적인 화자 정보 분리(disentanglement)방법을 제안한다. 또한, 화자 정보를 유지하는데 도움이 되는 생성적 적대 신경망(Generative Adversarial Network, GAN)에서 활용되는 판별기 구조를 도입함으로써, 디코더의 성능을 향상시킴으로써 화자 인식 성능을 보다 향상시킨다. 제안된 방법에 대한 적절성과 효율성은 벤치마크 데이터로 사용되고 있는 Voxceleb1에 대한 동일오류율(Equal Error Rate, EER) 개선 실험을 통하여 규명하였다.

제한된 영역의 대화에서 체언구 형태의 발화 이해를 위한 계획기반 생략 처리 (Plan-based Ellipsis Resolution for Utterances in Noun-Phrase-Form in Restricted Domain Dialogues)

  • 윤철진;서정연
    • 인지과학
    • /
    • 제11권1호
    • /
    • pp.81-92
    • /
    • 2000
  • 인간의 자연스러운 대화에서는 생략 현상이 빈번하게 일어난다. 생략 어구로부터 화자의 의도를 파악하는 것은 쉽지가 않다. 생략 어구 자체만 가지고는 그것의 의미와 화자의 의도를 파악하기 힘들며 이전 발화들로부터 구성된, 혹은 영역에 내재된 맥락과의 연관성을 살펴보아야 하기 때문이다. 본 연구에서는 Lambert가 제안한 3단계 계획기반 대화이해모델을 확장함으로써 한국어 대화에서 나타나는 생략 어구로부터 화자의 의도를 인식하는 모델을 제안한다. 먼저 Lambert의 모델에서 고려하지 않은, 생략 어구 형태의 발화를 통해 화자가 의도하는 담화 행위를 새로운 담화 recipe로 정의하여 추가하였다. 한국어에서는 조사가 화자의 의도를 나타내므로 이러한 특성을 이용하여 생략어구를 표층 화행으로 표현할 때, 조사 정보를 포함하여 화자의 의도 인식을 용이하게 함을 볼 수 있었다. 또한 객체와 초점화 이론을 제안하여, 생략 어구를 통해서 화자가 두 개의 계획을 비교하여 고려하는 의도를 인식할 수 있도록 했다.

  • PDF

다양한 잡음 환경하에서 환경 군집화를 통한 화자 및 환경 동시 적응 (Simultaneous Speaker and Environment Adaptation by Environment Clustering in Various Noise Environments)

  • 김영국;송화전;김형순
    • 한국음향학회지
    • /
    • 제28권6호
    • /
    • pp.566-571
    • /
    • 2009
  • 본 논문에서는 eigenvoice 방식에 기반하여 다양한 잡음 환경에 강인한 고속 화자 적응 방법을 제안하였다. 제안된 방법은 잡음 제거 기술과 환경 군집화 방법을 기반으로 한다. 그러나, 잡음 제거 기술을 통해 잡음을 제거한 후에도 여전히 잔여 잡음이 존재하므로 비음성 구간의 켑스트럼 평균을 사용하여 잡음 환경별로 화자 적응 데이터를 분류한 후 각각의 환경별로 환경 모델을 구성한다. 이러한 환경 군집화를 적응데이터에 대해 구성한 후 테스트 음성이 입력되면 군집화된 모델 중에서 인식 데이터와 가장 유사한 복수의 환경별 군집화된 화자 적응 모델을 구한 후 이들의 가중함을 통해 화자 적응을 수행하는 방법이다. 제안된 방법은 적응 및 평가를 통해 화자 독립 모델을 사용한 경우에 비해 $40{\sim}59%$ 인식 오류 감소율을 얻었다.

가중 거리 개념이 도입된 HCNN을 이용한 화자 독립 숫자음 인식에 관한 연구 (Speaker-Independent Korean Digit Recognition Using HCNN with Weighted Distance Measure)

  • 김도석;이수영
    • 한국통신학회논문지
    • /
    • 제18권10호
    • /
    • pp.1422-1432
    • /
    • 1993
  • HCNN(Hidden Control Neural Network)은 신경회로망에 의한 비선형 예측과 HMM의 segmentation 기능을 접합시킨 신경회로망 모델로서, 시간에 따라 입출력 사상 함수를 변화시킴으로써 음성 신호를 잘 모델링할 수 있도록 되어 있다. 본 논물에서는 첫째, HCNN의 성능이 HMM보다 우수함을 보이고, 둘째로, HCNN에서의 예측 오차 측정에 적절한 거리 측도를 이용하기 위해 가중거리가 도입된 HCNN을 제안하여, 화자 독립 음성 인식에 있어 그 성능이 우수함을 보였다. 여기서 가중거리는 음성 특징 벡터 각 구성 성분의 분산도 차이를 고려한 거리이다. 화자 독립 숫자음 인식 실험 결과, 유클리드 저리를 이용한 HCNN에 대해 95%의 인식율을 얻었는데, 이는 HMM에 비해 1.28% 높은 결과로서, 확률적인 제한이 가해진 HMM에 비해 시스템의 동작인 모델링을 이용한 HCNN이 더 우수함을 알 수 있다. 또한 가중거리를 이용한 CNN에 대해서는 97.35%의 인식율을 얻었는데, 이는 유클리드 거리를 이용한HCNN에 비해 2.3%가 향상된 결과이다. 가중 거리를 도입한 HCHN의 경우에 더 높은 인식율을 얻은 이유는, 오인식이 많이 되는 화자의 인식율을 높임으로써 화자간의 인식율차가 감소하게 되기 때문임을 알 수 있었고, 따라서 화자 독립 음성인식에 가중거리를 도입한 HCNN이 보다 적합합을 알 수 있다.

  • PDF

Eigenvoice 병합을 이용한 효율적인 고속 화자 적응 (Efficient Rapid Speaker Adaptation Using Merging Eigenvoices)

  • 최동진;오영환
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 2004년도 추계학술발표대회논문집 제23권 2호
    • /
    • pp.115-118
    • /
    • 2004
  • 음성 인식 분야에서는 화자 적응을 통해 화자 독립 시스템의 성능을 화자 종속 시스템에 근접시키려는 여러 가지 노력이 시도되고 있다. 특히 30 초미만의 매우 적은 양의 적응 자료를 이용하는 고속 화자 적응에 대한 관심이 증가하고 있다. 고속 화자 적응에 적합한 eigenvoice 를 이용한 적응 방법은 eigenvoice 를 구성하기 위해 너무 많은 계산량과 메모리를 요구한다. 본 논문에서는 각각 따로 계산된 eigenvoice 들을 한 번에 구성한 eigenvoice 들과 거의 같은 정확도를 갖도록 병합하여 고속 화자 적응에 이용하는 방법을 제안한다. 이 방법을 이용하면 훈련 자료의 추가시 처음부터 새롭게 eigenvoice 를 구하는 대신 추가된 자료에 대한 eigenvoice 를 구하고 병합함으로써 계산량과 메모리양을 현저히 줄일 수 있다. 실험 결과, 메모리와 계산량은 추가되는 화자 종속 모델의 수에 따라 감소하며 성능 저하는 거의 없었다.

  • PDF

유성음의 정보를 이용한 화자식별에 관한 연구 (On the speaker identification using the informations contained in the voiced intervals)

  • 오창환;박대성;최홍섭
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 2000년도 학술발표대회 논문집 제19권 2호
    • /
    • pp.175-178
    • /
    • 2000
  • GMM을 기반으로 하는 화자식별 시스템은 입력음성의 길이의 장단에 의해서 인식률에 차이가 생긴다. 이는 가우시안 모델의 파라미터를 추정할 때, 않은 데이터를 사용할수록 추정이 정확해지기 때문이다. 따라서 화자식별에 사용하는 입력데이터는 화자가 발성한 모든 음성신호에서 잡음구간만을 제거한 유,무성음을 이용하게 된다. 그러나 이 경우 데이터의 양이 많아져서 실시간 처리에 어려움이 있겠다. 본 논문에서는 전체 음성구간을 이용하는 대신 유성음 구간만을 추출하여 이 구간의 켑스트럼과 피치 값들을 특징파라미터로 이용하여 화자식별에 이용하였다. 특히 피치성분은 일반적으로 통신채널과 핸드셋의 영향에 상대적으로 강한 장점이 있다. 실험을 위하여 20대의 남성 및 여성화자 40명으로부터 얻은 음성데이터에서 유성음구간을 추출하여 GMM을 이용한 문장독립 화자식별 실험을 하였으며, 실험결과 스펙트럼정보와 함께 피치 정보가 화자식별에 유용하게 사용될 수 있음을 알 수 있었다

  • PDF