• Title/Summary/Keyword: 화자독립

Search Result 231, Processing Time 0.02 seconds

Recognition of Corrupted Speech by Noise using Wavelet Packets (웨이블릿 페킷을 이용한 잡음에 손상된 음성신호 인식에 관한 연구)

  • Koh Kwang-hyun;Chang Sungwook;Yang Sung-il;Kwon Y.
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.89-92
    • /
    • 1999
  • 인식기 훈련과정에서 발생하지 않았던 잡음이 인식과정에서 신호를 손상할 경우 인식률의 저하가 발생한다. 본 논문에서는 음성의 질을 떨어뜨리는 이러한 잡음을 Wavelet Packets을 이용하여 전처리함으로서 인식률을 향상시키는 방법을 제안한다. 인식기로는 Hidden Markov Model을 사용하였고, 시스템에 사용된 특징 파라미터로는 15차 Cepstrum을 사용하였다. 11 kHz로 샘플링된 숫자음에 Additive White Gaussian Noise를 첨가한 손상된 음성신호를 인식실험에 사용하였다. 화자독립으로 진행된 실험에서 잡음에 의해 손상된 SNR 20dB의 음성신호에 대하여 Wavelet Packets로 잡음을 제거한 후 복원된 음성신호 의 인식률은 약 $10\%$ 향상됨을 확인하였다.

  • PDF

A Study on the Rtension of HMM Parameters for Speech Recognition (음성인식을 위한 HMM의 파라메터 확장에 관한 연구)

  • 박창호
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06c
    • /
    • pp.152-156
    • /
    • 1994
  • 본 논문에서는 연속출력 확률분포 HMM 모델의 단점을 보완하기 위해 1) 지속시간 확률분포를 갖는 HMM, 2) 동적특징 파라메터를 부여한 HMM, 3) 혼합연속출력 확률분포 HMM을 구성하여 한국어 단음절에 대한 인식실험을 하였다. 실험결과 화자 종속에서는 연속출력 확률분포 HMM 보다 지속시간 확률분포를 갖는 HMM의 경우 0.70%, 동적특징 파라메터를 부여한 HMM의 경우 1.06%, 혼합연속출력 확률분포 HMM의 경우 1.64%의 인식류리 향상되었다. 화자 독립에서는 연속출력 확률분포 HMM보다 동적특징 파라메터를 부여한 HMM의 경우 1.4%, 혼합연속 출력 확률분포 HMM의 경우 2.36%, 지속시간 확률분포를 갖는 HMM의 경우 2.78%의 인식률이 향상되었다.

  • PDF

A study on the recognition of Koreans syllable using HMM segmentation and LVQ (HMM Segmentation과 LVQ를 이용한 한국어 음절인식에 관한 연구)

  • 안종영
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06c
    • /
    • pp.378-382
    • /
    • 1994
  • HMM 세그멘테이션을 이용하여 LVQ 알고리즘에 적용시킨 하이브리드 음성인식에 관한 연구이다. LVQ 학습알고리즘은 정적 패턴 분리를 위한 참조벡터 즉, 고정차원인 벡터들을 생성하는데 유리하다. 하이브리드 알고리즘은 정적패턴 인식에 사용 되어지는 LVQ 알고리즘에 HMM 세그멘테이션을 접목시켜 입력패턴을 정규화된 의미있는 값으로서 바꾸어 사용하는데 있다. 한국어 음절중 8개 모음 아, 이, 우, 에, 오, 애, 어, 으를 추출하여 인식실험을 하였다. 인식률은 화자종속일 경우 코드북수 256개를 기준으로 LVQ1, LVQ2, LVQ3, OLVQ1 알고리즘순으로 91.7%, 91.8%, 91.1%의 인식률을 구했고 화자 독립의 경우는 83.4%, 83.9%, 86.8%, 85.3%의 인식률을 구했다.

  • PDF

A Study on the Construction of Speech DB to build a Stock sales system (증권거래시스템 구축을 위한 음성 DB의 구축)

  • Eo Bumsuk;Kim hakjin;Kim Soonhyob
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.95-98
    • /
    • 2000
  • 음성 인식 시스템의 개발을 위해서는 음성 데이터베이스 구축이 중요한 과제의 하나로써, 많은 시간과 노력이 요구된다. 본 논문은 ARS 주식거래 시스템에서 사용되는 주식의 매수, 매도, 증시 현황에 관련된 문장과 숫자음에 대하여 DB 구축한다. 이 DB 구축을 위하여 Dialogic 사의 D/41ESC보드를 장착하고, Window NT4.0 플렛폼에서 음성을 수집하였다. 본 논문에서는 음성 수집을 위해 전국의 20대에서 50대까지의 남녀에 대해 1명당 50개의 문장 또는 숫자음에 대하여, 유선 및 무선을 통하여 데이터를 수집하였다. 또한 화자 독립 음성 인식을 위하여 1200명의 화자로 구성되어 있다. 지역별로 보면, 서울 및 경기, 강원 지역과 영호남, 충청 지역으로 나누었으며, 일반폰, 휴대폰, 공중전화의 환경에서, 그리고 실내와 실외환경에서 각각 수집하였다.

  • PDF

A Study on the Submission of Multiple Candidates for Decision in Speaker-Independent Speech Recognition by VQ/HMM (VQ/HMM에 의한 화자독립 음성인식에서 다수 후보자를 인식 대상으로 제출하는 방법에 관한 연구)

  • Lee, Chang-Young;Nam, Ho-Soo
    • Speech Sciences
    • /
    • v.12 no.3
    • /
    • pp.115-124
    • /
    • 2005
  • We investigated on the submission of multiple candidates in speaker-independent speech recognition by VQ/HMM. Submission of fixed number of multiple candidates has first been examined. As the number of candidates increases by two, three, and four, the recognition error rates were found to decrease by 41%, 58%, and 65%, respectively compared to that of a single candidate. We tried another approach that the candidates within a range of Viterbi scores are submitted. The number of candidates showed geometric increase as the admitted range becomes large. For a practical application, a combination of the above two methods was also studied. We chose the candidates within some range of Viterbi scores and limited the maximum number of candidates submitted to five. Experimental results showed that recognition error rates of less than 10% could be achieved with average number of candidates of 3.2 by this method.

  • PDF

Bimodal Speech Recognition Modeling Using Neural Networks (신경망을 이용한 이중모달 음성 인식 모델링)

  • 류정우;성지애;이순신;김명원
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04c
    • /
    • pp.567-569
    • /
    • 2003
  • 최근 잡음환경에서 강인한 음성인식을 위해 음성 잡음에 영향을 받지 않은 영상정보를 이용한 이중모달 음성인식 연구가 활발히 진행되고 있다. 기존 음성인식기로 좋은 성능을 보이는 HMM은 이질적인 정보를 융합하는데 있어 많은 제약과 어려움을 가지고 있다. 하지만 신경망은 이질적인 정보를 효율적으로 융합할 수 있는 장점을 가지고 있으며 그에 대한 많은 연구가 수행되고 있다. 따라서 본 논문에서는 잡음환경에 강인한 이중모달 음성 인식 모델로 이중모달 신경망(BN-NN)을 제안한다. 이중모달 신경망은 특징융합 방법으로 음성정보와 영상정보를 융합하고 있으며. 입력정보의 특성을 고려하기 위해 윈도우와 중복영역의 개념을 적용하여 시제위치를 고려하도록 설계되어있다. 제안된 모델은 잡음환경에서 음성인식기와 성능을 비교하고, 화자독립 고립단어 인식에서 기존 융합방법인 CHMM과 비교하여 그 가능성을 확인한다.

  • PDF

Development of Continuous Speech Recognition System for Multimedia Mobile Terminal Applications (휴대 멀티미디어 단말용 음성인식 시스템 개발)

  • 김승희
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.06c
    • /
    • pp.59-62
    • /
    • 1998
  • 본 논문에서는 한국전자통신연구원의 Handy Combi 응용 도메인을 대상으로 한 화자독립 연속음성인식 시스템 개발에 관하여 기술한다. 불특정화자가 자연스럽게 발음한 연속음성을 인식하는 기술은 펜인식 등과 더불어 멀티모달 인터페이스의 핵심 요소로서, 이동 환경에서 사용자의 다양한 요구사항을 처리하는 지능형 에이전트에 구현을 위해 필수적으로 개발되어야 하는 기술이다. 본 논문에서는 연속확률분포를 가지는 Hidden Markov Model(HMM) 기반의 연속음성인식 시스템을 구현하였다. 개발된 시스템은 음성특징벡터로 MFCC를 사용하였으며, 음소 모델의 강인한 훈련을 위해 음성학적 지식에 기반을 둔 tree-based clustering 방식을 도입하였다. 인식단계에서는 인식속도를 개선시키기 위해 beam-search 기법을 적용하였다. 인식 실험 결과, 99.7%의 어절 인식률과 98.8%의 문장 인식률을 얻었으며, 최종적인 문장의 이해도는 99% 이상이었다.

  • PDF

The Implementation of Continuous Digit Recognition Using DSP (DSP를 이용한 연속숫자 음성 인식기 구현)

  • Lee Seong-Kwon;Lim Young-chun;Seo Jun-Bae;Jung Hyun-youl
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.93-96
    • /
    • 2004
  • 본 논문은 TMS320C5501 16bit DSP를 적용한 실시간 화자독립 연속 숫자인식기의 구현에 관해 서술한다. 하드웨어 모듈의 구성은 TMS320C5501 300MHz DSP, 코덱으로는 TLV320AIC1103, SDRAM, 외부장치와의 인터페이스를 위한 HPI, Uart, MIC, SPK Out 단자로 구성되었다. 음성인식 알고리즘은 HM-Net 방식을 사용하였고 고정소수점 연산처리 방식으로 C를 이용한 최적화 작업을 수행하였으며 스트리밍 방식의 인식 방법으로 실시간 처리가 가능하도록 구현하였다. 숫자 인식에 사용한 모델은 41음소에 기반한 트라이폰을 학습하였으며, 특징 파라미터로는 LPCMEL 20차를 사용하였다. 임베디드 시스템의 실시간 음성인식 시스템 구성에 중점을 두었으며 PC상에서의 성능과 비교해 볼때 본 DSP 상에서 500단어, 50문장의 인식을 평균 1.5초 전후로 인식하도록 하였으며 간단한 연결 단어 인식을 수행하는데 무리 없음을 보여준다. 특별히 한국어 연속숫자 부분에 중점을 두었고, 본 연구에서 구현된 연속 음성인식 시스템에 사용된 숫자 인식에서 음절 바이폰 모델에 대하여 $92.92\%$의 인식율을 얻을 수 있었다.

  • PDF

A Study on the Automatic Speech Control System Using DMS model on Real-Time Windows Environment (실시간 윈도우 환경에서 DMS 모델을 이용한 자동 음성 제어 시스템에 관한 연구)

  • 남동선
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.06e
    • /
    • pp.361-364
    • /
    • 1998
  • 본 논문은 인식 속도의 개선을 위해 단어의 지속시간에 따라 Section의 수를 변경한 가변섹션 수 DMS모델을 사용한 실시간 인식 시스템을 연구하고 인식된 결과를 실제 수행하도록 하는 시스템을 구현하는 것이 목적이다. 이러한 윈도우 음성 제어 시스템 구현을 위해 음성의 자동 검출, 윈도우 제어 모듈 구현, 동적 모델 재구성을 이용하여 적용된 단어 단위인식 시스템의 단점을 장점으로 수용하는 시스템을 구현하였고 본 시스템의 이름은 “VocManagerII”라 명명하였다. 구현된 시스템의 성능 평가 결과 인식 및 제어 수행 속도는 1초이내에 이루어지며 인식율은 66개의 기본 명령어에 대하여 화자 종속 99.36%, 화자 독립 99.08%의 좋은 인식율을 보여 주었다.

  • PDF

A Study on the Phoneme Segmentation Using Neural Network (신경망을 이용한 음소분할에 관한 연구)

  • 이광석;이광진;조신영;허강인;김명기
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.5
    • /
    • pp.472-481
    • /
    • 1992
  • In this paper, we proposed a method of segmenting speech signal by neural network and its validity is proved by computer simulation. The neural network Is composed of multi layer perceptrons with one hidden layer. The matching accuracies of the proposed algorithm are measured for continuous vowel and place names. The resulting average matching accuracy is 100% for speaker-dependent case, 99.5% for speaker-independent case and 94.5% for each place name when the neural network 1,; trained for 6 place names simultaneously.

  • PDF